Fixed Point Approximation for Enriched Suzuki Nonexpansive Mappings in Banach Spaces
Guardado en:
| Publicado en: | Axioms vol. 14, no. 6 (2025), p. 426 |
|---|---|
| Autor principal: | |
| Otros Autores: | , , , , |
| Publicado: |
MDPI AG
|
| Materias: | |
| Acceso en línea: | Citation/Abstract Full Text + Graphics Full Text - PDF |
| Etiquetas: |
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
| Resumen: | This paper investigates the approximation of fixed points for mappings that satisfy the enriched (C) condition using a modified iterative process in a Banach space framework. We first establish a weak convergence result and then derive strong convergence theorems under suitable assumptions. To illustrate the applicability of our findings, we present a numerical example involving mappings that satisfy the enriched (C) condition but not the standard (C) condition. Additionally, numerical computations and graphical representations demonstrate that the proposed iterative process achieves a faster convergence rate compared to several existing methods. As a practical application, we introduce a projection based an iterative process for solving split feasibility problems (SFPs) in a Hilbert space setting. Our findings contribute to the ongoing development of iterative processes for solving optimization and feasibility problems in mathematical and applied sciences. |
|---|---|
| ISSN: | 2075-1680 |
| DOI: | 10.3390/axioms14060426 |
| Fuente: | Engineering Database |