A Hybrid Soft Sensor Approach Combining Partial Least-Squares Regression and an Unscented Kalman Filter for State Estimation in Bioprocesses
Uloženo v:
| Vydáno v: | Bioengineering vol. 12, no. 6 (2025), p. 654 |
|---|---|
| Hlavní autor: | |
| Další autoři: | |
| Vydáno: |
MDPI AG
|
| Témata: | |
| On-line přístup: | Citation/Abstract Full Text + Graphics Full Text - PDF |
| Tagy: |
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstrakt: | Real-time information on key state variables during fermentation is crucial for the effective optimization and control of bioprocesses. Specialized sensors for online or at-line monitoring of these variables are often associated with high costs, especially during early-stage process optimization. In this study, fed-batch processes of an L-phenylalanine (L-phe) production process were carried out using a recombinant Escherichia coli strain under varying inducer concentrations. The available online process variables from the L-phe production process were used to estimate the state variables biomass, glycerol, L-phe, acetate, and L-tyrosine (L-tyr) via partial least-squares regression (PLSR). These predictions were then incorporated as measurements into an unscented Kalman filter (UKF). The filter uses a coarse-grained model as a state estimator, which, in addition to extracellular variables, also provides information on intracellular states. The results of PLSR showed very good prediction accuracy for L-phe, moderate accuracy for glycerol, biomass, and L-tyr and poor performance for acetate concentrations. In combination with the UKF, the estimation of the L-phe concentrations was greatly improved compared to the CGM, whereas further improvement is still needed for the remaining state variables. |
|---|---|
| ISSN: | 2306-5354 |
| DOI: | 10.3390/bioengineering12060654 |
| Zdroj: | Engineering Database |