Model-Based Design of Contrast-Limited Histogram Equalization for Low-Complexity, High-Speed, and Low-Power Tone-Mapping Operation

Guardado en:
Detalles Bibliográficos
Publicado en:Electronics vol. 14, no. 12 (2025), p. 2416-2440
Autor principal: Dong, Wei
Otros Autores: Nascimento Maikon, Dileepan, Joseph
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Resumen:Imaging applications involving outdoor scenes and fast motion require sensing and processing of high-dynamic-range images at video rates. In turn, image signal processing pipelines that serve low-dynamic-range displays require tone mapping operators (TMOs). For high-speed and low-power applications with low-cost field-programmable gate arrays (FPGAs), global TMOs that employ contrast-limited histogram equalization prove ideal. To develop such TMOs, this work proposes a MATLAB–Simulink–Vivado design flow. A realized design capable of megapixel video rates using milliwatts of power requires only a fraction of the resources available in the lowest-cost Artix-7 device from Xilinx (now Advanced Micro Devices). Unlike histogram-based TMO approaches for nonlinear sensors in the literature, this work exploits Simulink modeling to reduce the total required FPGA memory by orders of magnitude with minimal impact on video output. After refactoring an approach from the literature that incorporates two subsystems (Base Histograms and Tone Mapping) to one incorporating four subsystems (Scene Histogram, Perceived Histogram, Tone Function, and Global Mapping), memory is exponentially reduced by introducing a fifth subsystem (Interpolation). As a crucial stepping stone between MATLAB algorithm abstraction and Vivado circuit realization, the Simulink modeling facilitated a bit-true design flow.
ISSN:2079-9292
DOI:10.3390/electronics14122416
Fuente:Advanced Technologies & Aerospace Database