A Systematic Review and Classification of HPC-Related Emerging Computing Technologies

Guardado en:
Bibliografiske detaljer
Udgivet i:Electronics vol. 14, no. 12 (2025), p. 2476-2519
Hovedforfatter: Arianyan Ehsan
Andre forfattere: Gholipour Niloofar, Maleki Davood, Ghorbani Neda, Sepahvand Abdolah, Goudarzi Pejman
Udgivet:
MDPI AG
Fag:
Online adgang:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Tags: Tilføj Tag
Ingen Tags, Vær først til at tagge denne postø!
Beskrivelse
Resumen:In recent decades, access to powerful computational resources has brought about a major transformation in science, with supercomputers drawing significant attention from academia, industry, and governments. Among these resources, high-performance computing (HPC) has emerged as one of the most critical processing infrastructures, providing a suitable platform for evaluating and implementing novel technologies. In this context, the development of emerging computing technologies has opened up new horizons in information processing and the delivery of computing services. In this regard, this paper systematically reviews and classifies emerging HPC-related computing technologies, including quantum computing, nanocomputing, in-memory architectures, neuromorphic systems, serverless paradigms, adiabatic technology, and biological solutions. Within the scope of this research, 142 studies which were mostly published between 2018 and 2025 are analyzed, and relevant hardware solutions, domain-specific programming languages, frameworks, development tools, and simulation platforms are examined. The primary objective of this study is to identify the software and hardware dimensions of these technologies and analyze their roles in improving the performance, scalability, and efficiency of HPC systems. To this end, in addition to a literature review, statistical analysis methods are employed to assess the practical applicability and impact of these technologies across various domains, including scientific simulation, artificial intelligence, big data analytics, and cloud computing. The findings of this study indicate that emerging HPC-related computing technologies can serve as complements or alternatives to classical computing architectures, driving substantial transformations in the design, implementation, and operation of high-performance computing infrastructures. This article concludes by identifying existing challenges and future research directions in this rapidly evolving field.
ISSN:2079-9292
DOI:10.3390/electronics14122476
Fuente:Advanced Technologies & Aerospace Database