A Systematic Review and Classification of HPC-Related Emerging Computing Technologies
Sparad:
| I publikationen: | Electronics vol. 14, no. 12 (2025), p. 2476-2519 |
|---|---|
| Huvudupphov: | |
| Övriga upphov: | , , , , |
| Utgiven: |
MDPI AG
|
| Ämnen: | |
| Länkar: | Citation/Abstract Full Text + Graphics Full Text - PDF |
| Taggar: |
Inga taggar, Lägg till första taggen!
|
| Abstrakt: | In recent decades, access to powerful computational resources has brought about a major transformation in science, with supercomputers drawing significant attention from academia, industry, and governments. Among these resources, high-performance computing (HPC) has emerged as one of the most critical processing infrastructures, providing a suitable platform for evaluating and implementing novel technologies. In this context, the development of emerging computing technologies has opened up new horizons in information processing and the delivery of computing services. In this regard, this paper systematically reviews and classifies emerging HPC-related computing technologies, including quantum computing, nanocomputing, in-memory architectures, neuromorphic systems, serverless paradigms, adiabatic technology, and biological solutions. Within the scope of this research, 142 studies which were mostly published between 2018 and 2025 are analyzed, and relevant hardware solutions, domain-specific programming languages, frameworks, development tools, and simulation platforms are examined. The primary objective of this study is to identify the software and hardware dimensions of these technologies and analyze their roles in improving the performance, scalability, and efficiency of HPC systems. To this end, in addition to a literature review, statistical analysis methods are employed to assess the practical applicability and impact of these technologies across various domains, including scientific simulation, artificial intelligence, big data analytics, and cloud computing. The findings of this study indicate that emerging HPC-related computing technologies can serve as complements or alternatives to classical computing architectures, driving substantial transformations in the design, implementation, and operation of high-performance computing infrastructures. This article concludes by identifying existing challenges and future research directions in this rapidly evolving field. |
|---|---|
| ISSN: | 2079-9292 |
| DOI: | 10.3390/electronics14122476 |
| Källa: | Advanced Technologies & Aerospace Database |