Photoautotrophic Production of Eicosapentaenoic Acid (EPA) with Nannochloropsis oceanica Under Dynamic Climate Simulations

Salvato in:
Dettagli Bibliografici
Pubblicato in:Processes vol. 13, no. 6 (2025), p. 1649-1666
Autore principale: Thurn Anna-Lena
Altri autori: Gerwald Sebastian, Brück, Thomas, Weuster-Botz Dirk
Pubblicazione:
MDPI AG
Soggetti:
Accesso online:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Tags: Aggiungi Tag
Nessun Tag, puoi essere il primo ad aggiungerne!!
Descrizione
Abstract:Marine microalgae from the genus Nannochloropsis are promising candidates for the photoautotrophic production of eicosapentaenoic acid (EPA, C20:5), a polyunsaturated fatty acid known for its numerous health benefits. A recent study demonstrated that Microchloropsis salina can accumulate high amounts of EPA when cultivated in flat-plate gas-lift photobioreactors. This study aimed to characterize an alternative strain, Nannochloropsis oceanica, and compare its biomass and EPA productivity to M. salina. Applying simulated dynamic climate conditions of a repeated sunny summer day in Eastern Australia, N. oceanica was cultivated in LED-illuminated flat-plate gas-lift photobioreactors. The results showed significantly higher biomass growth and EPA contents compared to M. salina. An EPA productivity of 33.0 ± 0.6 mgEPA L−1 d−1 has been achieved in batch processes with N. oceanica. Scaling up the photoautotrophic process to 8 m2 thin-layer cascade photobioreactors resulted in doubled concentrations of N. oceanica biomass compared to laboratory-scale batch processes. This improvement was likely due to the reduced fluid layer depth, which enhanced light availability to the microalgal cells. Using urea instead of nitrate as a nitrogen source further improved the EPA production of N. oceanica in thin-layer cascade photobioreactors, achieving CDW concentrations of up to 17.7 g L−1 and thus a high EPA concentration of 843 mg L−1. These findings highlight N. oceanica as an alternative to M. salina for sustainable EPA production, offering potential for further industrial applications.
ISSN:2227-9717
DOI:10.3390/pr13061649
Fonte:Materials Science Database