Material Selection for the Development of Orthoses Using Multicriteria Methods (MCDMs) and Simulation

I tiakina i:
Ngā taipitopito rārangi puna kōrero
I whakaputaina i:Processes vol. 13, no. 6 (2025), p. 1796-1817
Kaituhi matua: Salazar Loor Rodger Benjamin
Ētahi atu kaituhi: Martínez-Gómez, Javier, Sarmiento, Anchundia Josencka
I whakaputaina:
MDPI AG
Ngā marau:
Urunga tuihono:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Ngā Tūtohu: Tāpirihia he Tūtohu
Kāore He Tūtohu, Me noho koe te mea tuatahi ki te tūtohu i tēnei pūkete!

MARC

LEADER 00000nab a2200000uu 4500
001 3223939710
003 UK-CbPIL
022 |a 2227-9717 
024 7 |a 10.3390/pr13061796  |2 doi 
035 |a 3223939710 
045 2 |b d20250101  |b d20251231 
084 |a 231553  |2 nlm 
100 1 |a Salazar Loor Rodger Benjamin  |u Facultad de Ciencias de la Ingeniería, Universidad Técnica Estatal de Quevedo, Quevedo 120301, Ecuador; rsalazarl@uteq.edu.ec (R.B.S.L.); josencka.sarmiento2015@uteq.edu.ec (J.S.A.) 
245 1 |a Material Selection for the Development of Orthoses Using Multicriteria Methods (MCDMs) and Simulation 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Low-energy bone fractures refer to injuries that occur from minimal trauma or impact. These fractures are often a result of activities, such as falls from standing height or minor accidents, where the force exerted on the bone is insufficient to cause a break under normal conditions. To design an effective orthotic splint, it is critical to select the appropriate material that mimics the mechanical properties of traditional materials like plaster, which has long been used for immobilization purposes. In this case, Ansys CES Edupack 2025 software was utilized to evaluate and identify materials with mechanical characteristics similar to those of plaster. The software provided a list of six materials that met these criteria, but selecting the most suitable material involved more than just mechanical properties. Three different multicriteria decision-making methods were employed to ensure the best choice: TOPSIS, VIKOR, and COPRAS. These methods were applied to consider various factors, such as strength, flexibility, weight, cost, and ease of manufacturing. The results of the analyses revealed a strong consensus across all three methods. Each approach identified PLA (Polylactic Acid) as the most appropriate material for the orthotic design. Following the material selection process, simulations were conducted to assess the structural performance of the orthotic splint. The results determined that the minimum thickness required for the PLA orthosis was 4 mm, ensuring that it met all necessary criteria for acceptable stresses and deformations during the four primary movements exerted by the wrist. This thickness was sufficient to maintain the orthosis’s functionality without compromising comfort or effectiveness. Moreover, a significant improvement in the design was achieved through topological optimization, where the mass of the preliminary design was reduced by 9.58%, demonstrating an efficient use of material while maintaining structural integrity. 
653 |a Plasters 
653 |a Recovery (Medical) 
653 |a Prostheses 
653 |a Orthoses 
653 |a Multiple criterion 
653 |a Bones 
653 |a Mechanical properties 
653 |a Chronic illnesses 
653 |a Injuries 
653 |a Aluminum 
653 |a Rehabilitation 
653 |a Materials selection 
653 |a Older people 
653 |a Splints 
653 |a Polylactic acid 
653 |a Additive manufacturing 
653 |a Osteoporosis 
653 |a Orthopedic apparatus 
653 |a Fractures 
653 |a Carbon fibers 
653 |a Trauma 
653 |a Immobilization 
653 |a Plastics 
653 |a Structural integrity 
653 |a Wrist 
653 |a Effectiveness 
653 |a 3-D printers 
653 |a Medical equipment 
653 |a Design 
653 |a Designers 
653 |a Preliminary designs 
653 |a Software 
653 |a Thickness 
653 |a Decision making 
700 1 |a Martínez-Gómez, Javier  |u Universidad de Alcalá, Departamento de Teoría de la Señal y Comunicación, (Área de Ingeniería Mecánica) Escuela Politécnica, 28805 Alcalá de Henares, Madrid, Spain 
700 1 |a Sarmiento, Anchundia Josencka  |u Facultad de Ciencias de la Ingeniería, Universidad Técnica Estatal de Quevedo, Quevedo 120301, Ecuador; rsalazarl@uteq.edu.ec (R.B.S.L.); josencka.sarmiento2015@uteq.edu.ec (J.S.A.) 
773 0 |t Processes  |g vol. 13, no. 6 (2025), p. 1796-1817 
786 0 |d ProQuest  |t Materials Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3223939710/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3223939710/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3223939710/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch