Land use/land cover (LULC) classification using hyperspectral images: a review
Αποθηκεύτηκε σε:
| Εκδόθηκε σε: | Geo-Spatial Information Science vol. 28, no. 2 (Apr 2025), p. 345 |
|---|---|
| Κύριος συγγραφέας: | |
| Άλλοι συγγραφείς: | , , , , , |
| Έκδοση: |
Taylor & Francis Ltd.
|
| Θέματα: | |
| Διαθέσιμο Online: | Citation/Abstract Full Text - PDF |
| Ετικέτες: |
Δεν υπάρχουν, Καταχωρήστε ετικέτα πρώτοι!
|
| Περίληψη: | In the rapidly evolving realm of remote sensing technology, the classification of Hyperspectral Images (HSIs) is a pivotal yet formidable task. Hindered by inherent limitations in hyperspectral imaging, enhancing the accuracy and efficiency of HSI classification remains a critical and much-debated issue. This review study focuses on a key application area in HSI classification: Land Use/Land Cover (LULC). Our study unfolds in fourfold approaches. First, we present a systematic review of LULC hyperspectral image classification, delving into its background and key challenges. Second, we compile and analyze a number of datasets specific to LULC hyperspectral classification, offering a valuable resource. Third, we explore traditional machine learning models and cutting-edge methods in this field, with a particular focus on deep learning, and spectral decomposition techniques. Finally, we comprehensively analyze future developmental trajectories in HSI classification, pinpointing potential research challenges. This review aspires to be a cornerstone resource, enlightening researchers about the current landscape and future prospects of hyperspectral image classification. |
|---|---|
| ISSN: | 1009-5020 1993-5153 |
| DOI: | 10.1080/10095020.2024.2332638 |
| Πηγή: | Research Library |