Machine learning and data-driven methods in computational surface and interface science
Guardado en:
| Publicado en: | NPJ Computational Materials vol. 11, no. 1 (2025), p. 196 |
|---|---|
| Autor principal: | |
| Otros Autores: | , |
| Publicado: |
Nature Publishing Group
|
| Materias: | |
| Acceso en línea: | Citation/Abstract Full Text Full Text - PDF |
| Etiquetas: |
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
| Resumen: | Machine learning and data-driven methods have started to transform the study of surfaces and interfaces. Here, we review how data-driven methods and machine learning approaches complement simulation workflows and contribute towards tackling grand challenges in computational surface science from 2D materials to interface engineering and electrocatalysis. Challenges remain, including the scarcity of large datasets and the need for more electronic structure methods for interfaces. |
|---|---|
| ISSN: | 2057-3960 |
| DOI: | 10.1038/s41524-025-01691-6 |
| Fuente: | Health & Medical Collection |