Machine learning and data-driven methods in computational surface and interface science

Na minha lista:
Detalhes bibliográficos
Publicado no:NPJ Computational Materials vol. 11, no. 1 (2025), p. 196
Autor principal: Hörmann, Lukas
Outros Autores: Stark, Wojciech G., Maurer, Reinhard J.
Publicado em:
Nature Publishing Group
Assuntos:
Acesso em linha:Citation/Abstract
Full Text
Full Text - PDF
Tags: Adicionar Tag
Sem tags, seja o primeiro a adicionar uma tag!
Descrição
Resumo:Machine learning and data-driven methods have started to transform the study of surfaces and interfaces. Here, we review how data-driven methods and machine learning approaches complement simulation workflows and contribute towards tackling grand challenges in computational surface science from 2D materials to interface engineering and electrocatalysis. Challenges remain, including the scarcity of large datasets and the need for more electronic structure methods for interfaces.
ISSN:2057-3960
DOI:10.1038/s41524-025-01691-6
Fonte:Health & Medical Collection