Efficient Parallel Processing of Big Data on Supercomputers for Industrial IoT Environments

محفوظ في:
التفاصيل البيبلوغرافية
الحاوية / القاعدة:Electronics vol. 14, no. 13 (2025), p. 2626-2651
المؤلف الرئيسي: Al Jawarneh Isam Mashhour
مؤلفون آخرون: Rosa, Lorenzo, Venanzi Riccardo, Foschini Luca, Bellavista Paolo
منشور في:
MDPI AG
الموضوعات:
الوصول للمادة أونلاين:Citation/Abstract
Full Text + Graphics
Full Text - PDF
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
الوصف
مستخلص:The integration of distributed big data analytics into modern industrial environments has become increasingly critical, particularly with the rise of data-intensive applications and the need for real-time processing at the edge. While High-Performance Computing (HPC) systems offer robust petabyte-scale capabilities for efficient big data analytics, the performance of big data frameworks, especially on ARM-based HPC systems, remains underexplored. This paper presents an extensive experimental study on deploying Apache Spark 3.0.2, the de facto standard in-memory processing system, on an ARM-based HPC system. This study conducts a comprehensive performance evaluation of Apache Spark through representative big data workloads, including K-means clustering, to assess the effects of latency variations, such as those induced by network delays, memory bottlenecks, or computational overheads, on application performance in industrial IoT and edge computing environments. Our findings contribute to an understanding of how big data frameworks like Apache Spark can be effectively deployed and optimized on ARM-based HPC systems, particularly when leveraging vectorized instruction sets such as SVE, contributing to the broader goal of enhancing the integration of cloud–edge computing paradigms in modern industrial environments. We also discuss potential improvements and strategies for leveraging ARM-based architectures to support scalable, efficient, and real-time data processing in Industry 4.0 and beyond.
تدمد:2079-9292
DOI:10.3390/electronics14132626
المصدر:Advanced Technologies & Aerospace Database