Efficient Parallel Processing of Big Data on Supercomputers for Industrial IoT Environments

Guardado en:
Detalles Bibliográficos
Publicado en:Electronics vol. 14, no. 13 (2025), p. 2626-2651
Autor principal: Al Jawarneh Isam Mashhour
Otros Autores: Rosa, Lorenzo, Venanzi Riccardo, Foschini Luca, Bellavista Paolo
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3229142773
003 UK-CbPIL
022 |a 2079-9292 
024 7 |a 10.3390/electronics14132626  |2 doi 
035 |a 3229142773 
045 2 |b d20250101  |b d20251231 
084 |a 231458  |2 nlm 
100 1 |a Al Jawarneh Isam Mashhour  |u Department of Computer Science, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates 
245 1 |a Efficient Parallel Processing of Big Data on Supercomputers for Industrial IoT Environments 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a The integration of distributed big data analytics into modern industrial environments has become increasingly critical, particularly with the rise of data-intensive applications and the need for real-time processing at the edge. While High-Performance Computing (HPC) systems offer robust petabyte-scale capabilities for efficient big data analytics, the performance of big data frameworks, especially on ARM-based HPC systems, remains underexplored. This paper presents an extensive experimental study on deploying Apache Spark 3.0.2, the de facto standard in-memory processing system, on an ARM-based HPC system. This study conducts a comprehensive performance evaluation of Apache Spark through representative big data workloads, including K-means clustering, to assess the effects of latency variations, such as those induced by network delays, memory bottlenecks, or computational overheads, on application performance in industrial IoT and edge computing environments. Our findings contribute to an understanding of how big data frameworks like Apache Spark can be effectively deployed and optimized on ARM-based HPC systems, particularly when leveraging vectorized instruction sets such as SVE, contributing to the broader goal of enhancing the integration of cloud–edge computing paradigms in modern industrial environments. We also discuss potential improvements and strategies for leveraging ARM-based architectures to support scalable, efficient, and real-time data processing in Industry 4.0 and beyond. 
653 |a Parallel processing 
653 |a Software 
653 |a Data processing 
653 |a Performance evaluation 
653 |a Big Data 
653 |a Industry 4.0 
653 |a Edge computing 
653 |a Batch processing 
653 |a Manufacturing 
653 |a Workloads 
653 |a High performance computing 
653 |a Internet of Things 
653 |a Factories 
653 |a Data analysis 
653 |a Simulation 
653 |a Cluster analysis 
653 |a Digital twins 
653 |a Clustering 
653 |a Sensors 
653 |a Industrial applications 
653 |a Energy efficiency 
653 |a Paradigms 
653 |a Real time 
653 |a Vector quantization 
700 1 |a Rosa, Lorenzo  |u Dipartimento di Informatica—Scienza e Ingegneria, University of Bologna, Viale Risorgimento 2, 40136 Bologna, Italy; lorenzo.rosa@unibo.it (L.R.); riccardo.venanzi@unibo.it (R.V.); luca.foschini@unibo.it (L.F.); paolo.bellavista@unibo.it (P.B.) 
700 1 |a Venanzi Riccardo  |u Dipartimento di Informatica—Scienza e Ingegneria, University of Bologna, Viale Risorgimento 2, 40136 Bologna, Italy; lorenzo.rosa@unibo.it (L.R.); riccardo.venanzi@unibo.it (R.V.); luca.foschini@unibo.it (L.F.); paolo.bellavista@unibo.it (P.B.) 
700 1 |a Foschini Luca  |u Dipartimento di Informatica—Scienza e Ingegneria, University of Bologna, Viale Risorgimento 2, 40136 Bologna, Italy; lorenzo.rosa@unibo.it (L.R.); riccardo.venanzi@unibo.it (R.V.); luca.foschini@unibo.it (L.F.); paolo.bellavista@unibo.it (P.B.) 
700 1 |a Bellavista Paolo  |u Dipartimento di Informatica—Scienza e Ingegneria, University of Bologna, Viale Risorgimento 2, 40136 Bologna, Italy; lorenzo.rosa@unibo.it (L.R.); riccardo.venanzi@unibo.it (R.V.); luca.foschini@unibo.it (L.F.); paolo.bellavista@unibo.it (P.B.) 
773 0 |t Electronics  |g vol. 14, no. 13 (2025), p. 2626-2651 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3229142773/abstract/embedded/H09TXR3UUZB2ISDL?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3229142773/fulltextwithgraphics/embedded/H09TXR3UUZB2ISDL?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3229142773/fulltextPDF/embedded/H09TXR3UUZB2ISDL?source=fedsrch