Comprehensive Experimental Analysis of the Effect of Drilled Material on Torque Using Machine Learning Decision Trees

Na minha lista:
Detalhes bibliográficos
Publicado no:Materials vol. 18, no. 13 (2025), p. 3145-3167
Autor principal: Hnátik Jan
Outros Autores: Fulemová Jaroslava, Sklenička Josef, Gombár Miroslav, Vagaská Alena, Sýkora Jindřich, Lukáš, Adam
Publicado em:
MDPI AG
Assuntos:
Acesso em linha:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Tags: Adicionar Tag
Sem tags, seja o primeiro a adicionar uma tag!

MARC

LEADER 00000nab a2200000uu 4500
001 3229153586
003 UK-CbPIL
022 |a 1996-1944 
024 7 |a 10.3390/ma18133145  |2 doi 
035 |a 3229153586 
045 2 |b d20250101  |b d20251231 
084 |a 231532  |2 nlm 
100 1 |a Hnátik Jan 
245 1 |a Comprehensive Experimental Analysis of the Effect of Drilled Material on Torque Using Machine Learning Decision Trees 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a This article deals with drilling, the most common and simultaneously most important traditional machining operation, and which is significantly influenced by the properties of the machined material itself. To fully understand this process, both from a theoretical and practical perspective, it is essential to examine the influence of technological and tool-related factors on its various parameters. Based on the evaluation of experimentally obtained data using advanced statistical methods and machine learning decision trees, we present a detailed analysis of the effects of technological factors (fn, vc) and tool-related factors (D, εr, α0, ωr) on variations in torque (Mc) during drilling of two types of engineering steels: carbon steel (C45) and case-hardening steel (16MnCr5). The experimental verification was conducted using CTS20D cemented carbide tools coated with a Triple Cr SHM layer. The analysis revealed a significant influence of the material on torque variation, accounting for a share of 1.430%. The experimental verification confirmed the theoretical assumption that the nominal tool diameter (D) has a key effect (53.552%) on torque variation. The revolution feed (fn) contributes 36.263%, while the tool’s point angle (εr) and helix angle (ωr) influence torque by 1.189% and 0.310%, respectively. No significant effect of cutting speed (vc) on torque variation was observed. However, subsequent machine learning analysis revealed the complexity of interdependencies between the input factors and the resulting torque. 
653 |a Drilling machines (tools) 
653 |a Cemented carbides 
653 |a Machine learning 
653 |a Torque 
653 |a Verification 
653 |a Cutting speed 
653 |a Artificial intelligence 
653 |a Carbide tools 
653 |a Case hardening 
653 |a Machining 
653 |a Structural steels 
653 |a Statistical methods 
653 |a Cutting tools 
653 |a Engineering 
653 |a Aluminum composites 
653 |a Decision trees 
653 |a Deformation 
653 |a Carbon steels 
653 |a Geometry 
653 |a Drilling 
653 |a Steel 
700 1 |a Fulemová Jaroslava 
700 1 |a Sklenička Josef 
700 1 |a Gombár Miroslav 
700 1 |a Vagaská Alena 
700 1 |a Sýkora Jindřich 
700 1 |a Lukáš, Adam 
773 0 |t Materials  |g vol. 18, no. 13 (2025), p. 3145-3167 
786 0 |d ProQuest  |t Materials Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3229153586/abstract/embedded/J7RWLIQ9I3C9JK51?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3229153586/fulltextwithgraphics/embedded/J7RWLIQ9I3C9JK51?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3229153586/fulltextPDF/embedded/J7RWLIQ9I3C9JK51?source=fedsrch