Improved Real-Time SPGA Algorithm and Hardware Processing Architecture for Small UAVs

שמור ב:
מידע ביבליוגרפי
הוצא לאור ב:Remote Sensing vol. 17, no. 13 (2025), p. 2232-2263
מחבר ראשי: Wang, Huan
מחברים אחרים: Liu, Yunlong, Li, Yanlei, Li, Hang, Ge Xuyang, Jihao, Xin, Liang Xingdong
יצא לאור:
MDPI AG
נושאים:
גישה מקוונת:Citation/Abstract
Full Text + Graphics
Full Text - PDF
תגים: הוספת תג
אין תגיות, היה/י הראשונ/ה לתייג את הרשומה!

MARC

LEADER 00000nab a2200000uu 4500
001 3229156930
003 UK-CbPIL
022 |a 2072-4292 
024 7 |a 10.3390/rs17132232  |2 doi 
035 |a 3229156930 
045 2 |b d20250101  |b d20251231 
084 |a 231556  |2 nlm 
100 1 |a Wang, Huan  |u National Key Laboratory of Microwave Imaging Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China; wanghuan21a@mails.ucas.ac.cn (H.W.); 
245 1 |a Improved Real-Time SPGA Algorithm and Hardware Processing Architecture for Small UAVs 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Real-time Synthetic Aperture Radar (SAR) imaging for small Unmanned Aerial Vehicles (UAVs) has become a significant research focus. However, limitations in Size, Weight, and Power (SwaP) restrict the imaging quality and timeliness of small UAV-borne SAR, limiting its practical application. This paper presents a non-iterative real-time Feature Sub-image Based Stripmap Phase Gradient Autofocus (FSI-SPGA) algorithm. The FSI-SPGA algorithm combines 2D Constant False Alarm Rate (CFAR) for coarse point selection and spatial decorrelation for refined point selection. This approach enables the accurate extraction of high-quality scattering points. Using these points, the algorithm constructs a feature sub-image containing comprehensive phase error information and performs a non-iterative phase error estimation based on this sub-image. To address the multifunctional, low-power, and real-time requirements of small UAV SAR, we designed a highly efficient hybrid architecture. This architecture integrates dataflow reconfigurability and dynamic partial reconfiguration and is based on an ARM + FPGA platform. It is specifically tailored to the computational characteristics of the FSI-SPGA algorithm. The proposed scheme was assessed using data from a 6 kg small SAR system equipped with centimeter-level INS/GPS. For SAR images of size 4096 × 12,288, the FSI-SPGA algorithm demonstrated a 6 times improvement in processing efficiency compared to traditional methods while maintaining the same level of precision. The high-efficiency reconfigurable ARM + FPGA architecture processed the algorithm in 6.02 s, achieving 12 times the processing speed and three times the energy efficiency of a single low-power ARM platform. These results confirm the effectiveness of the proposed solution for enabling high-quality real-time SAR imaging under stringent SwaP constraints. 
653 |a Accuracy 
653 |a Constant false alarm rate 
653 |a Algorithms 
653 |a Unmanned aerial vehicles 
653 |a Synthetic aperture radar 
653 |a Energy efficiency 
653 |a Miniature aircraft 
653 |a Design 
653 |a Error analysis 
653 |a Phase error 
653 |a Field programmable gate arrays 
653 |a Digital signal processors 
653 |a Radar imaging 
653 |a Real time 
653 |a Reconfiguration 
653 |a Parameter estimation 
700 1 |a Liu, Yunlong  |u National Key Laboratory of Microwave Imaging Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China; wanghuan21a@mails.ucas.ac.cn (H.W.); 
700 1 |a Li, Yanlei  |u National Key Laboratory of Microwave Imaging Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China; wanghuan21a@mails.ucas.ac.cn (H.W.); 
700 1 |a Li, Hang  |u National Key Laboratory of Microwave Imaging Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China; wanghuan21a@mails.ucas.ac.cn (H.W.); 
700 1 |a Ge Xuyang  |u National Key Laboratory of Microwave Imaging Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China; wanghuan21a@mails.ucas.ac.cn (H.W.); 
700 1 |a Jihao, Xin  |u National Key Laboratory of Microwave Imaging Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China; wanghuan21a@mails.ucas.ac.cn (H.W.); 
700 1 |a Liang Xingdong  |u National Key Laboratory of Microwave Imaging Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China; wanghuan21a@mails.ucas.ac.cn (H.W.); 
773 0 |t Remote Sensing  |g vol. 17, no. 13 (2025), p. 2232-2263 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3229156930/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3229156930/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3229156930/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch