Fuzzy Sentiment Analysis for Improving German Learning in Corpus-Based Deep Learning Approaches

Сохранить в:
Библиографические подробности
Опубликовано в::International Journal of Web-Based Learning and Teaching Technologies vol. 20, no. 1 (2025), p. 1-23
Главный автор: Dong, Qi
Опубликовано:
IGI Global
Предметы:
Online-ссылка:Citation/Abstract
Full Text - PDF
Метки: Добавить метку
Нет меток, Требуется 1-ая метка записи!
Описание
Краткий обзор:This study aims to explore how to optimize corpus-based deep learning methods by introducing fuzzy sentiment analysis technology to improve the effectiveness and interactivity of German learning. By building an intelligent tutoring system that can perceive the emotional state of German learners, the effectiveness and interactivity of learning can be improved. Experimental results show that the fuzzy sentiment classifier has significant advantages in language skill improvement, user satisfaction, learning motivation, and sustained engagement. Fuzzy sentiment analysis technology can capture and process learners' emotional states more delicately, provide personalized feedback and support, and identify individual learning patterns and preferences based on long-term accumulated data, thereby recommending customized learning paths.
ISSN:1548-1093
1548-1107
DOI:10.4018/IJWLTT.383940
Источник:Engineering Database