SSLA: a semi-supervised framework for real-time injection detection and anomaly monitoring in cloud-based web applications with real-world implementation and evaluation

Guardado en:
Detalles Bibliográficos
Publicado en:Journal of Cloud Computing vol. 14, no. 1 (Dec 2025), p. 38
Autor principal: Sefati, Seyed Salar
Otros Autores: Arasteh, Bahman, Fratu, Octavian, Halunga, Simona
Publicado:
Springer Nature B.V.
Materias:
Acceso en línea:Citation/Abstract
Full Text
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3230618643
003 UK-CbPIL
022 |a 2192-113X 
024 7 |a 10.1186/s13677-025-00765-6  |2 doi 
035 |a 3230618643 
045 2 |b d20251201  |b d20251231 
084 |a 243929  |2 nlm 
100 1 |a Sefati, Seyed Salar  |u National University of Science and Technology POLITEHNICA Bucharest, Telecommunications Department, Faculty of Electronics, Telecommunications and Information Technology, Bucharest, Romania (GRID:grid.4551.5) (ISNI:0000 0001 2109 901X); Research Center Campus, POLITEHNICA Bucharest, Bucharest, Romania (GRID:grid.4551.5) (ISNI:0000 0001 2109 901X); Faculty of Engineering and Natural Science, Istinye University, Department of Software Engineering, Istanbul, Türkiye (GRID:grid.508740.e) (ISNI:0000 0004 5936 1556) 
245 1 |a SSLA: a semi-supervised framework for real-time injection detection and anomaly monitoring in cloud-based web applications with real-world implementation and evaluation 
260 |b Springer Nature B.V.  |c Dec 2025 
513 |a Journal Article 
520 3 |a Injection attacks and anomalies pose significant threats to the security and reliability of cloud-based web applications. Traditional detection methods, such as rule-based systems and supervised learning techniques, often struggle to adapt to evolving threats and large-scale, unstructured log data. This paper introduces a novel framework, the Semi-Supervised Log Analyzer (SSLA), designed for real-time injection detection and anomaly monitoring in cloud environments. SSLA uses semi-supervised learning to utilize both labeled and unlabeled data, reducing the reliance on extensive annotated datasets. A similarity graph is built from the log data, allowing for effective anomaly detection using graph-based methods. At the same time, privacy-preserving techniques are integrated to protect sensitive information. The proposed method is evaluated on large-scale datasets, including Hadoop Distributed File System (HDFS) and BlueGene/L (BGL) logs, demonstrating superior performance in terms of precision, recall, and scalability compared to state-of-the-art methods. SSLA achieves high detection accuracy with minimal computational overhead, ensuring reliable, real-time protection for cloud-based web applications. 
653 |a Machine learning 
653 |a Datasets 
653 |a Data integrity 
653 |a User behavior 
653 |a Applications programs 
653 |a Cloud computing 
653 |a Graph representations 
653 |a Real time 
653 |a Quality of service 
653 |a Methods 
653 |a Unstructured data 
653 |a Semi-supervised learning 
653 |a Anomalies 
653 |a Privacy 
653 |a Monitoring 
653 |a Efficiency 
700 1 |a Arasteh, Bahman  |u Faculty of Engineering and Natural Science, Istinye University, Department of Software Engineering, Istanbul, Türkiye (GRID:grid.508740.e) (ISNI:0000 0004 5936 1556); Khazar University, Department of Computer Science, Baku, Azerbaijan (GRID:grid.442897.4) (ISNI:0000 0001 0743 1899); Applied Science Research Center, Applied Science Private University, Amman, Jordan (GRID:grid.411423.1) (ISNI:0000 0004 0622 534X) 
700 1 |a Fratu, Octavian  |u National University of Science and Technology POLITEHNICA Bucharest, Telecommunications Department, Faculty of Electronics, Telecommunications and Information Technology, Bucharest, Romania (GRID:grid.4551.5) (ISNI:0000 0001 2109 901X); Research Center Campus, POLITEHNICA Bucharest, Bucharest, Romania (GRID:grid.4551.5) (ISNI:0000 0001 2109 901X); Academy of Romanian Scientists, Bucharest, Romania (GRID:grid.435118.a) (ISNI:0000 0004 6041 6841) 
700 1 |a Halunga, Simona  |u National University of Science and Technology POLITEHNICA Bucharest, Telecommunications Department, Faculty of Electronics, Telecommunications and Information Technology, Bucharest, Romania (GRID:grid.4551.5) (ISNI:0000 0001 2109 901X); Research Center Campus, POLITEHNICA Bucharest, Bucharest, Romania (GRID:grid.4551.5) (ISNI:0000 0001 2109 901X); Academy of Romanian Scientists, Bucharest, Romania (GRID:grid.435118.a) (ISNI:0000 0004 6041 6841) 
773 0 |t Journal of Cloud Computing  |g vol. 14, no. 1 (Dec 2025), p. 38 
786 0 |d ProQuest  |t Research Library 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3230618643/abstract/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3230618643/fulltext/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3230618643/fulltextPDF/embedded/75I98GEZK8WCJMPQ?source=fedsrch