Application Analysis and Research of Text Model Based on Improved CNN-LSTM in the Financial Field

محفوظ في:
التفاصيل البيبلوغرافية
الحاوية / القاعدة:International Journal of Advanced Computer Science and Applications vol. 16, no. 6 (2025)
المؤلف الرئيسي: PDF
منشور في:
Science and Information (SAI) Organization Limited
الموضوعات:
الوصول للمادة أونلاين:Citation/Abstract
Full Text - PDF
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
الوصف
مستخلص:With the continuous development of information technology, public opinion analysis based on open-source texts and financial situation awareness has become a research hotspot. This study focuses on financial news and commentary information. First, a topic crawler classification model combining the advantages of CNN and LSTM is proposed to improve the topic recognition ability of financial news texts, and a CNN-LSTM-AM stock price fluctuation prediction model is proposed. This model performs sentiment analysis through BiLSTM, integrates multiple emotional factors and market historical data, and demonstrates superior predictive performance compared to traditional models in multiple experiments.
تدمد:2158-107X
2156-5570
DOI:10.14569/IJACSA.2025.0160675
المصدر:Advanced Technologies & Aerospace Database