XPathia: A Deep Learning Approach for Translating Natural Language into XPath Queries for Non-Technical Users

Đã lưu trong:
Chi tiết về thư mục
Xuất bản năm:International Journal of Advanced Computer Science and Applications vol. 16, no. 6 (2025)
Tác giả chính: PDF
Được phát hành:
Science and Information (SAI) Organization Limited
Những chủ đề:
Truy cập trực tuyến:Citation/Abstract
Full Text - PDF
Các nhãn: Thêm thẻ
Không có thẻ, Là người đầu tiên thẻ bản ghi này!
Miêu tả
Bài tóm tắt:XPath is a widely used language for navigating and extracting data from XML documents due to its simple syntax and powerful querying capabilities. However, non-technical users often struggle to retrieve the needed information from XML files, as they lack knowledge of XML structures and query languages like XPath. To address this challenge, we propose XPathia, a novel deep learning-based model that automatically translates natural language questions into corresponding XPath queries. Our approach employs supervised learning on an annotated XML dataset to learn accurate mappings between natural language and structured XPath expressions. We evaluate XPathia using two standard metrics: Component Matching (CM) and Exact Matching (EM). Experimental results demonstrate that XPathia achieves a state-of-the-art performance with an accuracy of 25.85% on the test set.
số ISSN:2158-107X
2156-5570
DOI:10.14569/IJACSA.2025.01606102
Nguồn:Advanced Technologies & Aerospace Database