Hexic-Chebyshev Collocation Method for Solving Distributed-Order Time-Space Fractional Diffusion Equations
Guardado en:
| Publicado en: | Axioms vol. 14, no. 7 (2025), p. 515-536 |
|---|---|
| Autor principal: | |
| Otros Autores: | , , |
| Publicado: |
MDPI AG
|
| Materias: | |
| Acceso en línea: | Citation/Abstract Full Text + Graphics Full Text - PDF |
| Etiquetas: |
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
| Resumen: | This paper presents a spectral method to solve nonlinear distributed-order diffusion equations with both time-distributed-order and two-sided space-fractional terms. These are highly challenging to solve analytically due to the interplay between nonlinearity and the fractional distributed-order nature of the time and space derivatives. For this purpose, Hexic-kind Chebyshev polynomials (HCPs) are used as the backbone of the method to transform the primary problem into a set of nonlinear algebraic equations, which can be efficiently solved using numerical solvers, such as the Newton–Raphson method. The primary reason of choosing HCPs is due to their remarkable recurrence relations, facilitating their efficient computation and manipulation in mathematical analyses. A comprehensive convergence analysis was conducted to validate the robustness of the proposed method, with an error bound derived to provide theoretical guarantees for the solution’s accuracy. The method’s effectiveness is further demonstrated through two test examples, where the numerical results are compared with existing solutions, confirming the approach’s accuracy and reliability. |
|---|---|
| ISSN: | 2075-1680 |
| DOI: | 10.3390/axioms14070515 |
| Fuente: | Engineering Database |