Hexic-Chebyshev Collocation Method for Solving Distributed-Order Time-Space Fractional Diffusion Equations

Uloženo v:
Podrobná bibliografie
Vydáno v:Axioms vol. 14, no. 7 (2025), p. 515-536
Hlavní autor: Babaei Afshin
Další autoři: Banihashemi Sedigheh, Moghaddam, Behrouz Parsa, Dabiri Arman
Vydáno:
MDPI AG
Témata:
On-line přístup:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!

MARC

LEADER 00000nab a2200000uu 4500
001 3233083232
003 UK-CbPIL
022 |a 2075-1680 
024 7 |a 10.3390/axioms14070515  |2 doi 
035 |a 3233083232 
045 2 |b d20250101  |b d20251231 
084 |a 231430  |2 nlm 
100 1 |a Babaei Afshin  |u Department of Applied Mathematics, University of Mazandaran, Babolsar 47415-95477, Iran; babaei@umz.ac.ir (A.B.); banihashemi@umz.ac.ir (S.B.) 
245 1 |a Hexic-Chebyshev Collocation Method for Solving Distributed-Order Time-Space Fractional Diffusion Equations 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a This paper presents a spectral method to solve nonlinear distributed-order diffusion equations with both time-distributed-order and two-sided space-fractional terms. These are highly challenging to solve analytically due to the interplay between nonlinearity and the fractional distributed-order nature of the time and space derivatives. For this purpose, Hexic-kind Chebyshev polynomials (HCPs) are used as the backbone of the method to transform the primary problem into a set of nonlinear algebraic equations, which can be efficiently solved using numerical solvers, such as the Newton–Raphson method. The primary reason of choosing HCPs is due to their remarkable recurrence relations, facilitating their efficient computation and manipulation in mathematical analyses. A comprehensive convergence analysis was conducted to validate the robustness of the proposed method, with an error bound derived to provide theoretical guarantees for the solution’s accuracy. The method’s effectiveness is further demonstrated through two test examples, where the numerical results are compared with existing solutions, confirming the approach’s accuracy and reliability. 
653 |a Accuracy 
653 |a Calculus 
653 |a Mathematical analysis 
653 |a Polynomials 
653 |a Collocation methods 
653 |a Newton-Raphson method 
653 |a Chebyshev approximation 
653 |a Numerical analysis 
653 |a Methods 
653 |a Algebra 
653 |a Efficiency 
653 |a Nonlinearity 
653 |a Spectral methods 
700 1 |a Banihashemi Sedigheh  |u Department of Applied Mathematics, University of Mazandaran, Babolsar 47415-95477, Iran; babaei@umz.ac.ir (A.B.); banihashemi@umz.ac.ir (S.B.) 
700 1 |a Moghaddam, Behrouz Parsa  |u Department of Mathematics, La.C., Islamic Azad University, Lahijan 44169-39515, Iran; bparsa@iau.ac.ir 
700 1 |a Dabiri Arman  |u Department of Aerospace and Mechanical Engineering, University of Arizona, Tucson, AZ 85721, USA 
773 0 |t Axioms  |g vol. 14, no. 7 (2025), p. 515-536 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3233083232/abstract/embedded/H09TXR3UUZB2ISDL?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3233083232/fulltextwithgraphics/embedded/H09TXR3UUZB2ISDL?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3233083232/fulltextPDF/embedded/H09TXR3UUZB2ISDL?source=fedsrch