A Meta-Review of Spatial Transcriptomics Analysis Software

Сохранить в:
Библиографические подробности
Опубликовано в::Cells vol. 14, no. 14 (2025), p. 1060-1079
Главный автор: Gillespie, Jessica
Другие авторы: Pietrzak Maciej, Min-Ae, Song, Chung, Dongjun
Опубликовано:
MDPI AG
Предметы:
Online-ссылка:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Метки: Добавить метку
Нет меток, Требуется 1-ая метка записи!
Описание
Краткий обзор:Spatial transcriptomics combines gene expression data with spatial coordinates to allow for the discovery of detailed RNA localization, study development, investigating the tumor microenvironment, and creating a tissue atlas. A large range of spatial transcriptomics software is available, with little information on which may be better suited for particular datasets or computing environments. A review was conducted to detail the useful metrics when choosing appropriate software for spatial transcriptomics analysis. Specifically, the results from benchmarking studies that compared software across four key areas of spatial transcriptomics analysis (tissue architecture identification, spatially variable gene discovery, cell–cell communication analysis, and deconvolution) were assimilated into a single review that can serve as guidance when choosing potential spatial transcriptomics analysis software.
ISSN:2073-4409
DOI:10.3390/cells14141060
Источник:Biological Science Database