Mining Complex Ecological Patterns in Protected Areas: An FP-Growth Approach to Conservation Rule Discovery
Guardado en:
| Publicado en: | Entropy vol. 27, no. 7 (2025), p. 725-742 |
|---|---|
| Autor principal: | |
| Otros Autores: | |
| Publicado: |
MDPI AG
|
| Materias: | |
| Acceso en línea: | Citation/Abstract Full Text + Graphics Full Text - PDF |
| Etiquetas: |
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
| Resumen: | This study introduces a data-driven framework for enhancing the sustainable management of fish species in Romania’s Natura 2000 protected areas through ecosystem modeling and association rule mining (ARM). Drawing on seven years of ecological monitoring data for 13 fish species of ecological and socio-economic importance, we apply the FP-Growth algorithm to extract high-confidence co-occurrence patterns among 19 codified conservation measures. By encoding expert habitat assessments into binary transactions, the analysis revealed 44 robust association rules, highlighting interdependent management actions that collectively improve species resilience and habitat conditions. These results provide actionable insights for integrated, evidence-based conservation planning. The approach demonstrates the interpretability, scalability, and practical relevance of ARM in biodiversity management, offering a replicable method for supporting adaptive ecological decision making across complex protected area networks. |
|---|---|
| ISSN: | 1099-4300 |
| DOI: | 10.3390/e27070725 |
| Fuente: | Engineering Database |