Mining Complex Ecological Patterns in Protected Areas: An FP-Growth Approach to Conservation Rule Discovery
Guardado en:
| Udgivet i: | Entropy vol. 27, no. 7 (2025), p. 725-742 |
|---|---|
| Hovedforfatter: | |
| Andre forfattere: | |
| Udgivet: |
MDPI AG
|
| Fag: | |
| Online adgang: | Citation/Abstract Full Text + Graphics Full Text - PDF |
| Tags: |
Ingen Tags, Vær først til at tagge denne postø!
|
MARC
| LEADER | 00000nab a2200000uu 4500 | ||
|---|---|---|---|
| 001 | 3233183561 | ||
| 003 | UK-CbPIL | ||
| 022 | |a 1099-4300 | ||
| 024 | 7 | |a 10.3390/e27070725 |2 doi | |
| 035 | |a 3233183561 | ||
| 045 | 2 | |b d20250101 |b d20251231 | |
| 084 | |a 231460 |2 nlm | ||
| 100 | 1 | |a Hunyadi, Ioan Daniel | |
| 245 | 1 | |a Mining Complex Ecological Patterns in Protected Areas: An FP-Growth Approach to Conservation Rule Discovery | |
| 260 | |b MDPI AG |c 2025 | ||
| 513 | |a Journal Article | ||
| 520 | 3 | |a This study introduces a data-driven framework for enhancing the sustainable management of fish species in Romania’s Natura 2000 protected areas through ecosystem modeling and association rule mining (ARM). Drawing on seven years of ecological monitoring data for 13 fish species of ecological and socio-economic importance, we apply the FP-Growth algorithm to extract high-confidence co-occurrence patterns among 19 codified conservation measures. By encoding expert habitat assessments into binary transactions, the analysis revealed 44 robust association rules, highlighting interdependent management actions that collectively improve species resilience and habitat conditions. These results provide actionable insights for integrated, evidence-based conservation planning. The approach demonstrates the interpretability, scalability, and practical relevance of ARM in biodiversity management, offering a replicable method for supporting adaptive ecological decision making across complex protected area networks. | |
| 610 | 4 | |a European Union | |
| 651 | 4 | |a Romania | |
| 653 | |a Water quality | ||
| 653 | |a Ecology | ||
| 653 | |a Data mining | ||
| 653 | |a Datasets | ||
| 653 | |a Decision making | ||
| 653 | |a Codification | ||
| 653 | |a Biodiversity | ||
| 653 | |a Data analysis | ||
| 653 | |a Conservation | ||
| 653 | |a Algorithms | ||
| 653 | |a Strategic planning | ||
| 653 | |a Habitats | ||
| 653 | |a Ecological monitoring | ||
| 653 | |a Fish | ||
| 653 | |a Protected areas | ||
| 653 | |a Entropy | ||
| 700 | 1 | |a Cismaș Cristina | |
| 773 | 0 | |t Entropy |g vol. 27, no. 7 (2025), p. 725-742 | |
| 786 | 0 | |d ProQuest |t Engineering Database | |
| 856 | 4 | 1 | |3 Citation/Abstract |u https://www.proquest.com/docview/3233183561/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch |
| 856 | 4 | 0 | |3 Full Text + Graphics |u https://www.proquest.com/docview/3233183561/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch |
| 856 | 4 | 0 | |3 Full Text - PDF |u https://www.proquest.com/docview/3233183561/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch |