Normalized Ground States for Mixed Fractional Schrödinger Equations with Combined Local and Nonlocal Nonlinearities
Guardado en:
| Publicado en: | Fractal and Fractional vol. 9, no. 7 (2025), p. 469-497 |
|---|---|
| Autor principal: | |
| Otros Autores: | |
| Publicado: |
MDPI AG
|
| Materias: | |
| Acceso en línea: | Citation/Abstract Full Text Full Text - PDF |
| Etiquetas: |
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
| Resumen: | This paper studies the existence, regularity, and properties of normalized ground state solutions for the mixed fractional Schrödinger equations. For subcritical cases, we establish the boundedness and Sobolev regularity of solutions, derive Pohozaev identities, and prove the existence of radial, decreasing ground states, while showing nonexistence in the <inline-formula>L2</inline-formula>-critical case. For <inline-formula>L2</inline-formula>-supercritical exponents, we identify parameter regimes where ground states exist, characterized by a negative Lagrange multiplier. The analysis combines variational methods, scaling techniques, and the careful study of fibering maps to address challenges posed by competing nonlinearities and nonlocal interactions. |
|---|---|
| ISSN: | 2504-3110 |
| DOI: | 10.3390/fractalfract9070469 |
| Fuente: | Engineering Database |