Normalized Ground States for Mixed Fractional Schrödinger Equations with Combined Local and Nonlocal Nonlinearities
Zapisane w:
| Wydane w: | Fractal and Fractional vol. 9, no. 7 (2025), p. 469-497 |
|---|---|
| 1. autor: | |
| Kolejni autorzy: | |
| Wydane: |
MDPI AG
|
| Hasła przedmiotowe: | |
| Dostęp online: | Citation/Abstract Full Text Full Text - PDF |
| Etykiety: |
Nie ma etykietki, Dołącz pierwszą etykiete!
|
MARC
| LEADER | 00000nab a2200000uu 4500 | ||
|---|---|---|---|
| 001 | 3233189597 | ||
| 003 | UK-CbPIL | ||
| 022 | |a 2504-3110 | ||
| 024 | 7 | |a 10.3390/fractalfract9070469 |2 doi | |
| 035 | |a 3233189597 | ||
| 045 | 2 | |b d20250101 |b d20251231 | |
| 100 | 1 | |a Yang, Jie |u School of Mathematics and Computational Science, Huaihua University, Huaihua 418008, China | |
| 245 | 1 | |a Normalized Ground States for Mixed Fractional Schrödinger Equations with Combined Local and Nonlocal Nonlinearities | |
| 260 | |b MDPI AG |c 2025 | ||
| 513 | |a Journal Article | ||
| 520 | 3 | |a This paper studies the existence, regularity, and properties of normalized ground state solutions for the mixed fractional Schrödinger equations. For subcritical cases, we establish the boundedness and Sobolev regularity of solutions, derive Pohozaev identities, and prove the existence of radial, decreasing ground states, while showing nonexistence in the <inline-formula>L2</inline-formula>-critical case. For <inline-formula>L2</inline-formula>-supercritical exponents, we identify parameter regimes where ground states exist, characterized by a negative Lagrange multiplier. The analysis combines variational methods, scaling techniques, and the careful study of fibering maps to address challenges posed by competing nonlinearities and nonlocal interactions. | |
| 653 | |a Parameter identification | ||
| 653 | |a Lagrange multiplier | ||
| 653 | |a Ground state | ||
| 653 | |a Regularity | ||
| 653 | |a Schrodinger equation | ||
| 653 | |a Variational methods | ||
| 653 | |a Nonlinearity | ||
| 700 | 1 | |a Chen, Haibo |u School of Mathematics and Statistics, HNP-LAMA, Central South University, Changsha 410083, China; math_chb@csu.edu.cn | |
| 773 | 0 | |t Fractal and Fractional |g vol. 9, no. 7 (2025), p. 469-497 | |
| 786 | 0 | |d ProQuest |t Engineering Database | |
| 856 | 4 | 1 | |3 Citation/Abstract |u https://www.proquest.com/docview/3233189597/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch |
| 856 | 4 | 0 | |3 Full Text |u https://www.proquest.com/docview/3233189597/fulltext/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch |
| 856 | 4 | 0 | |3 Full Text - PDF |u https://www.proquest.com/docview/3233189597/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch |