Normalized Ground States for Mixed Fractional Schrödinger Equations with Combined Local and Nonlocal Nonlinearities

Zapisane w:
Opis bibliograficzny
Wydane w:Fractal and Fractional vol. 9, no. 7 (2025), p. 469-497
1. autor: Yang, Jie
Kolejni autorzy: Chen, Haibo
Wydane:
MDPI AG
Hasła przedmiotowe:
Dostęp online:Citation/Abstract
Full Text
Full Text - PDF
Etykiety: Dodaj etykietę
Nie ma etykietki, Dołącz pierwszą etykiete!

MARC

LEADER 00000nab a2200000uu 4500
001 3233189597
003 UK-CbPIL
022 |a 2504-3110 
024 7 |a 10.3390/fractalfract9070469  |2 doi 
035 |a 3233189597 
045 2 |b d20250101  |b d20251231 
100 1 |a Yang, Jie  |u School of Mathematics and Computational Science, Huaihua University, Huaihua 418008, China 
245 1 |a Normalized Ground States for Mixed Fractional Schrödinger Equations with Combined Local and Nonlocal Nonlinearities 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a This paper studies the existence, regularity, and properties of normalized ground state solutions for the mixed fractional Schrödinger equations. For subcritical cases, we establish the boundedness and Sobolev regularity of solutions, derive Pohozaev identities, and prove the existence of radial, decreasing ground states, while showing nonexistence in the <inline-formula>L2</inline-formula>-critical case. For <inline-formula>L2</inline-formula>-supercritical exponents, we identify parameter regimes where ground states exist, characterized by a negative Lagrange multiplier. The analysis combines variational methods, scaling techniques, and the careful study of fibering maps to address challenges posed by competing nonlinearities and nonlocal interactions. 
653 |a Parameter identification 
653 |a Lagrange multiplier 
653 |a Ground state 
653 |a Regularity 
653 |a Schrodinger equation 
653 |a Variational methods 
653 |a Nonlinearity 
700 1 |a Chen, Haibo  |u School of Mathematics and Statistics, HNP-LAMA, Central South University, Changsha 410083, China; math_chb@csu.edu.cn 
773 0 |t Fractal and Fractional  |g vol. 9, no. 7 (2025), p. 469-497 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3233189597/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3233189597/fulltext/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3233189597/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch