A Case Study on Monolith to Microservices Decomposition with Variational Autoencoder-Based Graph Neural Network
I tiakina i:
| I whakaputaina i: | Future Internet vol. 17, no. 7 (2025), p. 303-322 |
|---|---|
| Kaituhi matua: | |
| Ētahi atu kaituhi: | , , , |
| I whakaputaina: |
MDPI AG
|
| Ngā marau: | |
| Urunga tuihono: | Citation/Abstract Full Text + Graphics Full Text - PDF |
| Ngā Tūtohu: |
Kāore He Tūtohu, Me noho koe te mea tuatahi ki te tūtohu i tēnei pūkete!
|
| Whakarāpopotonga: | Microservice is a popular architecture for developing cloud-native applications. However, decomposing a monolithic application into microservices remains a challenging task. This complexity arises from the need to account for factors such as component dependencies, cohesive clusters, and bounded contexts. To address this challenge, we present an automated approach to decomposing monolithic applications into microservices. Our approach uses static code analysis to generate a dependency graph of the monolithic application. Then, a variational autoencoder (VAE) is used to extract features from the components of a monolithic application. Finally, the C-means algorithm is used to cluster the components into possible microservices. We evaluate our approach using a third-party benchmark comprising both monolithic and microservice implementations. Additionally, we compare its performance against two existing decomposition techniques. The results demonstrate the potential of our method as a practical tool for guiding the transition from monolithic to microservice architectures. |
|---|---|
| ISSN: | 1999-5903 |
| DOI: | 10.3390/fi17070303 |
| Puna: | ABI/INFORM Global |