Deep Neural Network-Based Design of Planar Coils for Proximity Sensing Applications

Guardat en:
Dades bibliogràfiques
Publicat a:Sensors vol. 25, no. 14 (2025), p. 4429-4453
Autor principal: Lalla Abderraouf
Altres autors: Di Barba Paolo, Hausman Sławomir, Mognaschi Maria Evelina
Publicat:
MDPI AG
Matèries:
Accés en línia:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 3233261828
003 UK-CbPIL
022 |a 1424-8220 
024 7 |a 10.3390/s25144429  |2 doi 
035 |a 3233261828 
045 2 |b d20250101  |b d20251231 
084 |a 231630  |2 nlm 
100 1 |a Lalla Abderraouf  |u Department of Electrical, Computer and Biomedical Engineering, University of Pavia, Via Ferrata 5, 27100 Pavia, Italy; paolo.dibarba@unipv.it (P.D.B.); eve.mognaschi@unipv.it (M.E.M.) 
245 1 |a Deep Neural Network-Based Design of Planar Coils for Proximity Sensing Applications 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a This study develops a deep learning procedure able to identify a planar coil geometry, given the desired magnetic field map. This approach demonstrates its capability to discover suitable coil designs that produce desired field characteristics with high accuracy and efficiency. The generated coils show strong agreement with target magnetic fields, enabling manufacturers to achieve simpler structures and improved performance. This method is suitable for inductive proximity sensors, wireless power transfer systems, and electromagnetic compatibility applications, offering a powerful and flexible tool for advanced planar coil design. 
653 |a Simulation 
653 |a Physics 
653 |a Deep learning 
653 |a Magnetic fields 
653 |a Printed circuit boards 
653 |a Optimization 
653 |a Neural networks 
653 |a Heating 
653 |a Data processing 
653 |a Numerical analysis 
653 |a Design 
653 |a Geometry 
653 |a Product development 
653 |a Efficiency 
700 1 |a Di Barba Paolo  |u Department of Electrical, Computer and Biomedical Engineering, University of Pavia, Via Ferrata 5, 27100 Pavia, Italy; paolo.dibarba@unipv.it (P.D.B.); eve.mognaschi@unipv.it (M.E.M.) 
700 1 |a Hausman Sławomir  |u Institute of Electronics, Lodz University of Technology, Al. Politechniki 8, 93-590 Lodz, Poland; slawomir.hausman@p.lodz.pl 
700 1 |a Mognaschi Maria Evelina  |u Department of Electrical, Computer and Biomedical Engineering, University of Pavia, Via Ferrata 5, 27100 Pavia, Italy; paolo.dibarba@unipv.it (P.D.B.); eve.mognaschi@unipv.it (M.E.M.) 
773 0 |t Sensors  |g vol. 25, no. 14 (2025), p. 4429-4453 
786 0 |d ProQuest  |t Health & Medical Collection 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3233261828/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3233261828/fulltextwithgraphics/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3233261828/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch