Deep Neural Network-Based Design of Planar Coils for Proximity Sensing Applications

Guardado en:
Detalles Bibliográficos
Publicado en:Sensors vol. 25, no. 14 (2025), p. 4429-4453
Autor principal: Lalla Abderraouf
Otros Autores: Di Barba Paolo, Hausman Sławomir, Mognaschi Maria Evelina
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Resumen:This study develops a deep learning procedure able to identify a planar coil geometry, given the desired magnetic field map. This approach demonstrates its capability to discover suitable coil designs that produce desired field characteristics with high accuracy and efficiency. The generated coils show strong agreement with target magnetic fields, enabling manufacturers to achieve simpler structures and improved performance. This method is suitable for inductive proximity sensors, wireless power transfer systems, and electromagnetic compatibility applications, offering a powerful and flexible tool for advanced planar coil design.
ISSN:1424-8220
DOI:10.3390/s25144429
Fuente:Health & Medical Collection