A systematic mapping review at the intersection of artificial intelligence and self-regulated learning

Guardat en:
Dades bibliogràfiques
Publicat a:International Journal of Educational Technology in Higher Education vol. 22, no. 1 (Dec 2025), p. 50
Autor principal: Banihashem, Seyyed Kazem
Altres autors: Bond, Melissa, Bergdahl, Nina, Khosravi, Hassan, Noroozi, Omid
Publicat:
Springer Nature B.V.
Matèries:
Accés en línia:Citation/Abstract
Full Text
Full Text - PDF
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 3235190030
003 UK-CbPIL
022 |a 2365-9440 
022 |a 1698-580X 
024 7 |a 10.1186/s41239-025-00548-8  |2 doi 
035 |a 3235190030 
045 2 |b d20251201  |b d20251231 
084 |a 142233  |2 nlm 
100 1 |a Banihashem, Seyyed Kazem  |u Open Universiteit, Heerlen, The Netherlands (GRID:grid.36120.36) (ISNI:0000 0004 0501 5439) 
245 1 |a A systematic mapping review at the intersection of artificial intelligence and self-regulated learning 
260 |b Springer Nature B.V.  |c Dec 2025 
513 |a Journal Article 
520 3 |a Recently, artificial intelligence (AI) has increasingly been integrated into self-regulated learning (SRL), presenting novel pathways to support SRL. While AI-SRL research has experienced rapid growth, there remains a significant gap in understanding the intersection between AI and SRL, resulting in oversight when identifying critical areas necessitating additional research or practical attention. Building upon a well-established framework, from Chatti and colleagues, this systematic mapping review identified 84 studies through the Web of Science, Scopus, IEEE Xplore, ACM Digital, EBSCOHost, Google Scholar, and Open Alex, to explore the intersection of AI and SRL within the four key aspects—Who (stakeholders), What (theory), How (methods), and Why (objectives). The main results revealed that AI-SRL research predominantly focuses on higher education students, with minimal attention to primary education and educators. AI is primarily implemented as an intervention—through adaptive systems and personalization, prediction and profiling, intelligent tutoring systems, and assessment and evaluation—to support students' SRL and learning processes. The direct impact of AI on SRL was primarily focused on the metacognitive and cognitive aspects of SRL, while the motivational aspect of SRL remains underexplored. While over one-third of the AI-SRL studies did not specify an SRL theory, Zimmerman’s model of SRL was the most frequently applied among those that did. The use of AI in supporting SRL has extended beyond just focusing on and supporting SRL itself; it has also aimed to enhance various educational and learning activities as end outcomes such as improving academic performance, motivation and emotions, engagement, and collaborative learning. The results of this study extend our understanding of the effective application of AI in supporting SRL and optimizing educational outcomes. Suggestions for further research and practice are provided. 
653 |a Students 
653 |a Collaboration 
653 |a Mapping 
653 |a Educational technology 
653 |a Feedback 
653 |a Teachers 
653 |a Cognition & reasoning 
653 |a Adaptive systems 
653 |a Learning 
653 |a Artificial intelligence 
653 |a Education 
653 |a Metacognition 
653 |a Self regulation 
653 |a Collaborative learning 
653 |a Academic achievement 
653 |a Tutoring 
653 |a Higher education 
653 |a College students 
653 |a Research 
653 |a Emotions 
653 |a Learning processes 
653 |a Cognitive aspects 
653 |a Motivation 
653 |a Attention 
653 |a Elementary education 
653 |a Cooperative learning 
653 |a Educational activities 
653 |a Learning outcomes 
653 |a Profiles 
653 |a Learning Analytics 
653 |a Literature Reviews 
653 |a Educational Development 
653 |a Scaffolding (Teaching Technique) 
653 |a Stakeholders 
653 |a Self Efficacy 
653 |a Intelligent Tutoring Systems 
653 |a Influence of Technology 
653 |a Distance Education 
653 |a Cognitive Processes 
653 |a Educational Change 
653 |a Trust (Psychology) 
653 |a At Risk Students 
653 |a Short Term Memory 
653 |a Student Records 
653 |a Science Instruction 
653 |a Elementary Secondary Education 
653 |a Language Processing 
653 |a Theory Practice Relationship 
653 |a Algorithms 
700 1 |a Bond, Melissa  |u University College London, London, UK (GRID:grid.83440.3b) (ISNI:0000 0001 2190 1201); University of Stavanger, Stavanger, Norway (GRID:grid.18883.3a) (ISNI:0000 0001 2299 9255) 
700 1 |a Bergdahl, Nina  |u Stockholm University, Stockholm, Sweden (GRID:grid.10548.38) (ISNI:0000 0004 1936 9377); Halmstad University, Halmstad, Sweden (GRID:grid.73638.39) (ISNI:0000 0000 9852 2034) 
700 1 |a Khosravi, Hassan  |u The University of Queensland, Brisbane, Australia (GRID:grid.1003.2) (ISNI:0000 0000 9320 7537) 
700 1 |a Noroozi, Omid  |u Wageningen University and Research, Wageningen, The Netherlands (GRID:grid.4818.5) (ISNI:0000 0001 0791 5666) 
773 0 |t International Journal of Educational Technology in Higher Education  |g vol. 22, no. 1 (Dec 2025), p. 50 
786 0 |d ProQuest  |t Political Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3235190030/abstract/embedded/Q8Z64E4HU3OH5N8U?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3235190030/fulltext/embedded/Q8Z64E4HU3OH5N8U?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3235190030/fulltextPDF/embedded/Q8Z64E4HU3OH5N8U?source=fedsrch