Scalable and lightweight deep learning for efficient high accuracy single-molecule localization microscopy

Guardado en:
Detalles Bibliográficos
Publicado en:Nature Communications vol. 16, no. 1 (2025), p. 7217-7226
Autor principal: Fei, Yue
Otros Autores: Fu, Shuang, Shi, Wei, Fang, Ke, Wang, Ruixiong, Zhang, Tianlun, Li, Yiming
Publicado:
Nature Publishing Group
Materias:
Acceso en línea:Citation/Abstract
Full Text
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Resumen:Deep learning has significantly improved the performance of single-molecule localization microscopy (SMLM), but many existing methods remain computationally intensive, limiting their applicability in high-throughput settings. To address these challenges, we present LiteLoc, a scalable analysis framework for high-throughput SMLM data analysis. LiteLoc employs a lightweight neural network architecture and integrates parallel processing across central processing unit (CPU) and graphics processing unit (GPU) resources to reduce latency and energy consumption without sacrificing localization accuracy. LiteLoc demonstrates substantial gains in processing speed and resource efficiency, making it an effective and scalable tool for routine SMLM workflows in biological research.This study presents LiteLoc, a lightweight and scalable AI model for efficient and accurate single molecule localization microscopy data analysis, bringing real-time deep-learning-based analysis to the era of high throughput super resolution imaging.
ISSN:2041-1723
DOI:10.1038/s41467-025-62662-5
Fuente:Health & Medical Collection