Scalable and lightweight deep learning for efficient high accuracy single-molecule localization microscopy

Gardado en:
Detalles Bibliográficos
Publicado en:Nature Communications vol. 16, no. 1 (2025), p. 7217-7226
Autor Principal: Fei, Yue
Outros autores: Fu, Shuang, Shi, Wei, Fang, Ke, Wang, Ruixiong, Zhang, Tianlun, Li, Yiming
Publicado:
Nature Publishing Group
Materias:
Acceso en liña:Citation/Abstract
Full Text
Full Text - PDF
Etiquetas: Engadir etiqueta
Sen Etiquetas, Sexa o primeiro en etiquetar este rexistro!

MARC

LEADER 00000nab a2200000uu 4500
001 3236797132
003 UK-CbPIL
022 |a 2041-1723 
024 7 |a 10.1038/s41467-025-62662-5  |2 doi 
035 |a 3236797132 
045 2 |b d20250101  |b d20251231 
084 |a 145839  |2 nlm 
100 1 |a Fei, Yue  |u Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China (ROR: https://ror.org/049tv2d57) (GRID: grid.263817.9) (ISNI: 0000 0004 1773 1790) 
245 1 |a Scalable and lightweight deep learning for efficient high accuracy single-molecule localization microscopy 
260 |b Nature Publishing Group  |c 2025 
513 |a Journal Article 
520 3 |a Deep learning has significantly improved the performance of single-molecule localization microscopy (SMLM), but many existing methods remain computationally intensive, limiting their applicability in high-throughput settings. To address these challenges, we present LiteLoc, a scalable analysis framework for high-throughput SMLM data analysis. LiteLoc employs a lightweight neural network architecture and integrates parallel processing across central processing unit (CPU) and graphics processing unit (GPU) resources to reduce latency and energy consumption without sacrificing localization accuracy. LiteLoc demonstrates substantial gains in processing speed and resource efficiency, making it an effective and scalable tool for routine SMLM workflows in biological research.This study presents LiteLoc, a lightweight and scalable AI model for efficient and accurate single molecule localization microscopy data analysis, bringing real-time deep-learning-based analysis to the era of high throughput super resolution imaging. 
653 |a Microscopy 
653 |a Parallel processing 
653 |a Central processing units--CPUs 
653 |a Accuracy 
653 |a Deep learning 
653 |a Data analysis 
653 |a Biological research 
653 |a Localization 
653 |a Machine learning 
653 |a Performance evaluation 
653 |a Efficiency 
653 |a Energy consumption 
653 |a Neural networks 
653 |a Graphics processing units 
653 |a Network latency 
653 |a Algorithms 
653 |a Latency 
653 |a Real time 
653 |a Economic 
700 1 |a Fu, Shuang  |u Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China (ROR: https://ror.org/049tv2d57) (GRID: grid.263817.9) (ISNI: 0000 0004 1773 1790) 
700 1 |a Shi, Wei  |u Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China (ROR: https://ror.org/049tv2d57) (GRID: grid.263817.9) (ISNI: 0000 0004 1773 1790); School of Life Sciences, Southern University of Science and Technology, Shenzhen, China (ROR: https://ror.org/049tv2d57) (GRID: grid.263817.9) (ISNI: 0000 0004 1773 1790) 
700 1 |a Fang, Ke  |u Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China (ROR: https://ror.org/049tv2d57) (GRID: grid.263817.9) (ISNI: 0000 0004 1773 1790) 
700 1 |a Wang, Ruixiong  |u Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China (ROR: https://ror.org/049tv2d57) (GRID: grid.263817.9) (ISNI: 0000 0004 1773 1790) 
700 1 |a Zhang, Tianlun  |u Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China (ROR: https://ror.org/049tv2d57) (GRID: grid.263817.9) (ISNI: 0000 0004 1773 1790) 
700 1 |a Li, Yiming  |u Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China (ROR: https://ror.org/049tv2d57) (GRID: grid.263817.9) (ISNI: 0000 0004 1773 1790); Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen, China (ROR: https://ror.org/049tv2d57) (GRID: grid.263817.9) (ISNI: 0000 0004 1773 1790) 
773 0 |t Nature Communications  |g vol. 16, no. 1 (2025), p. 7217-7226 
786 0 |d ProQuest  |t Health & Medical Collection 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3236797132/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3236797132/fulltext/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3236797132/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch