Photonic neural networks at the edge of spatiotemporal chaos in multimode fibers

Uloženo v:
Podrobná bibliografie
Vydáno v:Nanophotonics vol. 14, no. 16 (2025), p. 2723
Hlavní autor: Bahadır Utku Kesgin
Další autoři: Teğin, Uğur
Vydáno:
Walter de Gruyter GmbH
Témata:
On-line přístup:Citation/Abstract
Full Text - PDF
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Abstrakt:Optical computing has gained significant attention as a potential solution to the growing computational demands of machine learning, particularly for tasks requiring large-scale data processing and high energy efficiency. Optical systems offer promising alternatives to digital neural networks by exploiting light’s parallelism. This study explores a photonic neural network design using spatiotemporal chaos within graded-index multimode fibers to improve machine learning performance. Through numerical simulations and experiments, we show that chaotic light propagation in multimode fibers enhances data classification accuracy across domains, including biomedical imaging, fashion, and satellite geospatial analysis. This chaotic optical approach enables high-dimensional transformations, amplifying data separability and differentiation for greater accuracy. Fine-tuning parameters such as pulse peak power optimizes the reservoir’s chaotic properties, highlighting the need for careful calibration. These findings underscore the potential of chaos-based nonlinear photonic neural networks to advance optical computing in machine learning, paving the way for efficient, scalable architectures.
ISSN:2192-8606
2192-8614
DOI:10.1515/nanoph-2024-0593
Zdroj:Advanced Technologies & Aerospace Database