Exploring Purpose-Driven Methods and a Multifaceted Approach in Dam Health Monitoring Data Utilization
Guardat en:
| Publicat a: | Buildings vol. 15, no. 15 (2025), p. 2803-2843 |
|---|---|
| Autor principal: | |
| Altres autors: | , , |
| Publicat: |
MDPI AG
|
| Matèries: | |
| Accés en línia: | Citation/Abstract Full Text + Graphics Full Text - PDF |
| Etiquetes: |
Sense etiquetes, Sigues el primer a etiquetar aquest registre!
|
| Resum: | Dam monitoring tracks environmental variables (water level, temperature) and structural responses (deformation, seepage, and stress) to assess safety and performance. Structural health monitoring (SHM) refers to the systematic observation and analysis of the structural condition over time, and it is essential in maintaining the safety, functionality, and long-term performance of dams. This review examines monitoring data applications, covering structural health assessment methods, historical motivations, and key challenges. It discusses monitoring components, data acquisition processes, and sensor roles, stressing the need to integrate environmental, operational, and structural data for decision making. Key objectives include risk management, operational efficiency, safety evaluation, environmental impact assessment, and maintenance planning. Methodologies such as numerical modeling, statistical analysis, and machine learning are critically analyzed, highlighting their strengths and limitations and the demand for advanced predictive techniques. This paper also explores future trends in dam monitoring, offering insights for engineers and researchers to enhance infrastructure resilience. By synthesizing current practices and emerging innovations, this review aims to guide improvements in dam safety protocols, ensuring reliable and sustainable dam operations. The findings provide a foundation for the advancement of monitoring technologies and optimization of dam management strategies worldwide. |
|---|---|
| ISSN: | 2075-5309 |
| DOI: | 10.3390/buildings15152803 |
| Font: | Engineering Database |