Stiffness and Density Relationships in Additively Manufactured Structures: A Virial Theorem-Based Approach

Guardado en:
Detalles Bibliográficos
Publicado en:Materials vol. 18, no. 15 (2025), p. 3432-3445
Autor principal: Stejskal Tomáš
Otros Autores: Maláková Silvia, Lascsáková Marcela, Frankovský, Peter
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3239073363
003 UK-CbPIL
022 |a 1996-1944 
024 7 |a 10.3390/ma18153432  |2 doi 
035 |a 3239073363 
045 2 |b d20250101  |b d20251231 
084 |a 231532  |2 nlm 
100 1 |a Stejskal Tomáš  |u Department of Engineeringfor Design of Machines and Transport Equipment, Faculty of Mechanical Engineering, Technical University of Kosice, Letna No. 9, 042 00 Kosice, Slovakia; tomas.stejskal@tuke.sk 
245 1 |a Stiffness and Density Relationships in Additively Manufactured Structures: A Virial Theorem-Based Approach 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Topological optimization uses two main optimization conditions aimed at achieving the maximum stiffness at minimum weight of the loaded object, while not exceeding the allowable stress. This process naturally creates complex structures with varying degrees of density. There is a certain regularity between the density of the structure and stiffness, with the optimal density being related to the golden ratio. This study contributes to materials modeling and their characterization by introducing a mathematical theory related to the virial theorem as a predictive framework for understanding stiffness–density relationships in additively manufactured structures. The definition of virial stability and the methodology for deriving this stability from the kinetic and potential components of a random signal are introduced. The proposed virial-based model offers a generalizable tool for materials characterization, applicable not only to topological optimization but also to broader areas of materials science and advanced manufacturing. 
653 |a Minimum weight 
653 |a Thermodynamics 
653 |a Gases 
653 |a Mathematical models 
653 |a Stiffness 
653 |a Normal distribution 
653 |a Optimization 
653 |a Materials science 
653 |a Topology 
653 |a Binomial distribution 
653 |a Approximation 
653 |a Energy 
653 |a Stability 
653 |a Random signals 
653 |a Density 
653 |a Probability distribution 
653 |a Entropy 
653 |a Central limit theorem 
653 |a Additive manufacturing 
653 |a Virial theorem 
700 1 |a Maláková Silvia  |u Department of Engineeringfor Design of Machines and Transport Equipment, Faculty of Mechanical Engineering, Technical University of Kosice, Letna No. 9, 042 00 Kosice, Slovakia; tomas.stejskal@tuke.sk 
700 1 |a Lascsáková Marcela  |u Department of Applied Mathematics and Informatics, Faculty of Mechanical Engineering, Technical University of Kosice, Letna No. 9, 042 00 Kosice, Slovakia; marcela.lascsakova@tuke.sk 
700 1 |a Frankovský, Peter  |u Department of Applied Mechanics and Mechanical Engineering, Faculty of Mechanical Engineering, Technical University of Kosice, Letna No. 9, 042 00 Kosice, Slovakia; peter.frankovsky@tuke.sk 
773 0 |t Materials  |g vol. 18, no. 15 (2025), p. 3432-3445 
786 0 |d ProQuest  |t Materials Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3239073363/abstract/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3239073363/fulltextwithgraphics/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3239073363/fulltextPDF/embedded/75I98GEZK8WCJMPQ?source=fedsrch