P2ESA: Privacy-Preserving Environmental Sensor-Based Authentication

Guardado en:
Detalles Bibliográficos
Publicado en:Sensors vol. 25, no. 15 (2025), p. 4842-4862
Autor principal: Andraž, Krašovec
Otros Autores: Baldini Gianmarco, Pejović Veljko
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Resumen:The presence of Internet of Things (IoT) devices in modern working and living environments is growing rapidly. The data collected in such environments enable us to model users’ behaviour and consequently identify and authenticate them. However, these data may contain information about the user’s current activity, emotional state, or other aspects that are not relevant for authentication. In this work, we employ adversarial deep learning techniques to remove privacy-revealing information from the data while keeping the authentication performance levels almost intact. Furthermore, we develop and apply various techniques to offload the computationally weak edge devices that are part of the machine learning pipeline at training and inference time. Our experiments, conducted on two multimodal IoT datasets, show that P2ESA can be efficiently deployed and trained, and with user identification rates of between 75.85% and 93.31% (c.f. 6.67% baseline), can represent a promising support solution for authentication, while simultaneously fully obfuscating sensitive information.
ISSN:1424-8220
DOI:10.3390/s25154842
Fuente:Health & Medical Collection