Intelligent Optimization-Based Decision-Making Framework for Crop Planting Strategy with Total Profit Prediction
Guardado en:
| Publicado en: | Agriculture vol. 15, no. 16 (2025), p. 1736-1771 |
|---|---|
| Autor principal: | |
| Otros Autores: | , , , , , |
| Publicado: |
MDPI AG
|
| Materias: | |
| Acceso en línea: | Citation/Abstract Full Text + Graphics Full Text - PDF |
| Etiquetas: |
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
| Resumen: | Optimizing agricultural structure serves as a crucial pathway to promote sustainable rural economic development. This study focuses on a representative village in the mountainous region of North China, where agricultural production is constrained by perennial low-temperature conditions, resulting in widespread adoption of single-cropping systems. There exists an urgent need to enhance both economic returns and risk resilience of limited arable land through refined cultivation planning. However, traditional planting strategies face difficulties in synergistically optimizing long-term benefits from multi-crop combinations, while remaining vulnerable to climate fluctuations, market volatility, and complex inter-crop relationships. These limitations lead to constrained land productivity and inadequate economic resilience. To address these challenges, we propose an integrated decision-making approach combining stochastic programming, robust optimization, and data-driven modeling. The methodology unfolds in three phases: First, we construct a stochastic programming model targeting seven-year total profit maximization, which quantitatively analyzes relationships between decision variables (crop planting areas) and stochastic variables (climate/market factors), with optimal planting solutions derived through robust optimization algorithms. Second, to address natural uncertainties, we develop an integer programming model for ideal scenarios, obtaining deterministic optimization solutions via genetic algorithms. Furthermore, this study conducts correlation analyses between expected sales volumes and cost/unit price for three crop categories (staples, vegetables, and edible fungi), establishing both linear and nonlinear regression models to quantify how crop complementarity–substitution effects influence profitability. Experimental results demonstrate that the optimized strategy significantly improves land-use efficiency, achieving a 16.93% increase in projected total revenue. Moreover, the multi-scenario collaborative optimization enhances production system resilience, effectively mitigating market and environmental risks. Our proposal provides a replicable decision-making framework for sustainable intensification of agriculture in cold-region rural areas. |
|---|---|
| ISSN: | 2077-0472 |
| DOI: | 10.3390/agriculture15161736 |
| Fuente: | Agriculture Science Database |