Intelligent Optimization-Based Decision-Making Framework for Crop Planting Strategy with Total Profit Prediction

保存先:
書誌詳細
出版年:Agriculture vol. 15, no. 16 (2025), p. 1736-1771
第一著者: Wang Chongyuan
その他の著者: Zhang Jinjuan, Wang, Ting, Bowen, Zeng, Wang, Bi, Chen, Yishan, Chen, Yang
出版事項:
MDPI AG
主題:
オンライン・アクセス:Citation/Abstract
Full Text + Graphics
Full Text - PDF
タグ: タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!

MARC

LEADER 00000nab a2200000uu 4500
001 3243924768
003 UK-CbPIL
022 |a 2077-0472 
024 7 |a 10.3390/agriculture15161736  |2 doi 
035 |a 3243924768 
045 2 |b d20250101  |b d20251231 
084 |a 231331  |2 nlm 
100 1 |a Wang Chongyuan  |u Jiangxi Provincial Key Laboratory of Multidimensional Intelligent Perception and Control, Ganzhou 341000, Chinawangbi@jxust.edu.cn (B.W.); chenys@jxust.edu.cn (Y.C.) 
245 1 |a Intelligent Optimization-Based Decision-Making Framework for Crop Planting Strategy with Total Profit Prediction 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Optimizing agricultural structure serves as a crucial pathway to promote sustainable rural economic development. This study focuses on a representative village in the mountainous region of North China, where agricultural production is constrained by perennial low-temperature conditions, resulting in widespread adoption of single-cropping systems. There exists an urgent need to enhance both economic returns and risk resilience of limited arable land through refined cultivation planning. However, traditional planting strategies face difficulties in synergistically optimizing long-term benefits from multi-crop combinations, while remaining vulnerable to climate fluctuations, market volatility, and complex inter-crop relationships. These limitations lead to constrained land productivity and inadequate economic resilience. To address these challenges, we propose an integrated decision-making approach combining stochastic programming, robust optimization, and data-driven modeling. The methodology unfolds in three phases: First, we construct a stochastic programming model targeting seven-year total profit maximization, which quantitatively analyzes relationships between decision variables (crop planting areas) and stochastic variables (climate/market factors), with optimal planting solutions derived through robust optimization algorithms. Second, to address natural uncertainties, we develop an integer programming model for ideal scenarios, obtaining deterministic optimization solutions via genetic algorithms. Furthermore, this study conducts correlation analyses between expected sales volumes and cost/unit price for three crop categories (staples, vegetables, and edible fungi), establishing both linear and nonlinear regression models to quantify how crop complementarity–substitution effects influence profitability. Experimental results demonstrate that the optimized strategy significantly improves land-use efficiency, achieving a 16.93% increase in projected total revenue. Moreover, the multi-scenario collaborative optimization enhances production system resilience, effectively mitigating market and environmental risks. Our proposal provides a replicable decision-making framework for sustainable intensification of agriculture in cold-region rural areas. 
651 4 |a China 
653 |a Integer programming 
653 |a Agricultural land 
653 |a Strategy 
653 |a Regression analysis 
653 |a Correlation analysis 
653 |a Profits 
653 |a Rural areas 
653 |a Arable land 
653 |a Crops 
653 |a Stochastic models 
653 |a Prices 
653 |a Land use 
653 |a Staples 
653 |a Low temperature 
653 |a Climate change 
653 |a Crop planting 
653 |a Greenhouses 
653 |a Economics 
653 |a Decision making 
653 |a Genetic algorithms 
653 |a Complementarity 
653 |a Economic development 
653 |a Optimization 
653 |a Rice 
653 |a Algorithms 
653 |a Agricultural production 
653 |a Robustness (mathematics) 
653 |a Sustainable development 
653 |a Optimization algorithms 
653 |a Stochastic programming 
653 |a Legumes 
653 |a Planting 
653 |a Random variables 
653 |a Mathematical models 
653 |a Regression models 
653 |a Mountainous areas 
653 |a Environmental risk 
653 |a Mountain regions 
653 |a Agriculture 
653 |a Drought 
653 |a Resilience 
653 |a Costs 
653 |a Cropping systems 
653 |a Farm structure 
653 |a Constraints 
653 |a Economic 
653 |a Environmental 
700 1 |a Zhang Jinjuan  |u College of Resources and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China 
700 1 |a Wang, Ting  |u College of Information Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China 
700 1 |a Bowen, Zeng  |u Jiangxi Provincial Key Laboratory of Multidimensional Intelligent Perception and Control, Ganzhou 341000, Chinawangbi@jxust.edu.cn (B.W.); chenys@jxust.edu.cn (Y.C.) 
700 1 |a Wang, Bi  |u Jiangxi Provincial Key Laboratory of Multidimensional Intelligent Perception and Control, Ganzhou 341000, Chinawangbi@jxust.edu.cn (B.W.); chenys@jxust.edu.cn (Y.C.) 
700 1 |a Chen, Yishan  |u Jiangxi Provincial Key Laboratory of Multidimensional Intelligent Perception and Control, Ganzhou 341000, Chinawangbi@jxust.edu.cn (B.W.); chenys@jxust.edu.cn (Y.C.) 
700 1 |a Chen, Yang  |u College of Computer Science and Technology, Xi’an University of Science and Technology, Xi’an 710054, China; yang.chen@xust.edu.cn 
773 0 |t Agriculture  |g vol. 15, no. 16 (2025), p. 1736-1771 
786 0 |d ProQuest  |t Agriculture Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3243924768/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3243924768/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3243924768/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch