On the Canonical Form of Singular Distributed Parameter Systems
Guardado en:
| Publicado en: | Axioms vol. 14, no. 8 (2025), p. 583-597 |
|---|---|
| Autor principal: | |
| Otros Autores: | , , , , |
| Publicado: |
MDPI AG
|
| Materias: | |
| Acceso en línea: | Citation/Abstract Full Text + Graphics Full Text - PDF |
| Etiquetas: |
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
| Resumen: | This study addresses the standardization of Singular Distributed Parameter Systems (SDPSs). It focuses on classifying and simplifying first- and second-order linear SDPSs using characteristic matrix theory. First, the study classifies first-order linear SDPSs into three canonical forms based on characteristic curve theory, with an example illustrating the standardization process for parabolic SDPSs. Second, under regular conditions, first-order SDPSs can be decomposed into fast and slow subsystems, where the fast subsystem reduces to an Ordinary Differential Equation (ODE) system, while the slow subsystem retains the spatiotemporal characteristics of the original system. Third, the standardization and classification of second-order SDPSs is proposed using three reversible transformations that achieve structural equivalence. Finally, an illustrative example of a building temperature control is built with SDPSs. The simulation results show the importance of system standardization in real-world applications. This research provides a theoretical foundation for SDPS standardization and offers insights into the practical implementation of distributed temperature systems. |
|---|---|
| ISSN: | 2075-1680 |
| DOI: | 10.3390/axioms14080583 |
| Fuente: | Engineering Database |