On the Canonical Form of Singular Distributed Parameter Systems

Guardado en:
Detalles Bibliográficos
Publicado en:Axioms vol. 14, no. 8 (2025), p. 583-597
Autor principal: Meng Zhongchen
Otros Autores: Jiang Yushan, Nier, Dong, Wang Wanyue, Chang Yunxiao, Ma Ruoxiang
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3243980975
003 UK-CbPIL
022 |a 2075-1680 
024 7 |a 10.3390/axioms14080583  |2 doi 
035 |a 3243980975 
045 2 |b d20250101  |b d20251231 
084 |a 231430  |2 nlm 
100 1 |a Meng Zhongchen  |u School of Mathematics and Statistics, Northeastern University, Qinhuangdao 066004, China 
245 1 |a On the Canonical Form of Singular Distributed Parameter Systems 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a This study addresses the standardization of Singular Distributed Parameter Systems (SDPSs). It focuses on classifying and simplifying first- and second-order linear SDPSs using characteristic matrix theory. First, the study classifies first-order linear SDPSs into three canonical forms based on characteristic curve theory, with an example illustrating the standardization process for parabolic SDPSs. Second, under regular conditions, first-order SDPSs can be decomposed into fast and slow subsystems, where the fast subsystem reduces to an Ordinary Differential Equation (ODE) system, while the slow subsystem retains the spatiotemporal characteristics of the original system. Third, the standardization and classification of second-order SDPSs is proposed using three reversible transformations that achieve structural equivalence. Finally, an illustrative example of a building temperature control is built with SDPSs. The simulation results show the importance of system standardization in real-world applications. This research provides a theoretical foundation for SDPS standardization and offers insights into the practical implementation of distributed temperature systems. 
653 |a Partial differential equations 
653 |a Classification 
653 |a Standardization 
653 |a Temperature control 
653 |a Variables 
653 |a Distributed control systems 
653 |a Distributed parameter systems 
653 |a Matrix theory 
653 |a Eigenvalues 
653 |a Algebra 
653 |a Canonical forms 
653 |a Subsystems 
653 |a Differential equations 
653 |a Reynolds number 
700 1 |a Jiang Yushan  |u School of Mathematics and Statistics, Northeastern University, Qinhuangdao 066004, China 
700 1 |a Nier, Dong  |u School of Economics, Northeastern University, Qinhuangdao 066004, China 
700 1 |a Wang Wanyue  |u School of Management, Northeastern University, Qinhuangdao 066004, China 
700 1 |a Chang Yunxiao  |u School of Mathematics and Statistics, Northeastern University, Qinhuangdao 066004, China 
700 1 |a Ma Ruoxiang  |u School of Mathematics and Statistics, Northeastern University, Qinhuangdao 066004, China 
773 0 |t Axioms  |g vol. 14, no. 8 (2025), p. 583-597 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3243980975/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3243980975/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3243980975/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch