A Voronoi–A* Fusion Algorithm with Adaptive Layering for Efficient UAV Path Planning in Complex Terrain

שמור ב:
מידע ביבליוגרפי
הוצא לאור ב:Drones vol. 9, no. 8 (2025), p. 542-568
מחבר ראשי: Dong Boyu
מחברים אחרים: Zhang, Gong, Yang, Yan, Yuan Peiyuan, Lu Shuntong
יצא לאור:
MDPI AG
נושאים:
גישה מקוונת:Citation/Abstract
Full Text + Graphics
Full Text - PDF
תגים: הוספת תג
אין תגיות, היה/י הראשונ/ה לתייג את הרשומה!

MARC

LEADER 00000nab a2200000uu 4500
001 3244009940
003 UK-CbPIL
022 |a 2504-446X 
024 7 |a 10.3390/drones9080542  |2 doi 
035 |a 3244009940 
045 2 |b d20250101  |b d20251231 
100 1 |a Dong Boyu  |u School of Electronics and Information Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China 
245 1 |a A Voronoi–A* Fusion Algorithm with Adaptive Layering for Efficient UAV Path Planning in Complex Terrain 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a <sec sec-type="highlights"> This paper proposes a Voronoi–A* fusion algorithm for UAV path planning in complex terrain. A DEM layering method based on obstacle density is introduced to decompose complex 3D terrain into multiple horizontal flight planes, significantly reducing computational complexity while maintaining 3D flexibility. Within each plane, a greedy Voronoi algorithm constructs a sparse vertex network as path nodes. A weighting function incorporates start/goal proximity, heading consistency, and altitude safety. The algorithm employs greedy heuristics to prioritize high-weight vertices, enabling the rapid generation of safe paths. What are the main findings? <list list-type="bullet"> <list-item> </list-item>A DEM layering method based on obstacle density. <list-item> A greedy Voronoi algorithm applied within each flight plane. </list-item> What is the implication of the main finding? <list list-type="bullet"> <list-item> </list-item>Computational complexity is minimized, and efficiency is enhanced. <list-item> Generated paths closely approximate the optimal path. </list-item> Unmanned Aerial Vehicles (UAVs) face significant challenges in global path planning within complex terrains, as traditional algorithms (e.g., A*, PSO, APF) struggle to balance computational efficiency, path optimality, and safety. This study proposes a Voronoi–A* fusion algorithm, combining Voronoi-vertex-based rapid trajectory generation with A* supplementary expansion for enhanced performance. First, an adaptive DEM layering strategy divides the terrain into horizontal planes based on obstacle density, reducing computational complexity while preserving 3D flexibility. The Voronoi vertices within each layer serve as a sparse waypoint network, with greedy heuristic prioritizing vertices that ensure safety margins, directional coherence, and goal proximity. For unresolved segments, A* performs localized searches to ensure complete connectivity. Finally, a line-segment interpolation search further optimizes the path to minimize both length and turning maneuvers. Simulations in mountainous environments demonstrate superior performance over traditional methods in terms of path planning success rates, path optimality, and computation. Our framework excels in real-time scenarios, such as disaster rescue and logistics, although it assumes static environments and trades slight path elongation for robustness. Future research should integrate dynamic obstacle avoidance and weather impact analysis to enhance adaptability in real-world conditions. 
653 |a Apexes 
653 |a Adaptability 
653 |a Optimization 
653 |a Greedy algorithms 
653 |a Safety margins 
653 |a Horizontal flight 
653 |a Layering 
653 |a Unmanned aerial vehicles 
653 |a Systems stability 
653 |a Heuristic 
653 |a Density 
653 |a Energy consumption 
653 |a Efficiency 
653 |a Adaptive algorithms 
653 |a Performance enhancement 
653 |a Digital Elevation Models 
653 |a Genetic algorithms 
653 |a Planes 
653 |a Impact analysis 
653 |a Flexibility 
653 |a Methods 
653 |a Weighting functions 
653 |a Complexity 
653 |a Real time 
653 |a Segments 
653 |a Path planning 
653 |a Obstacle avoidance 
653 |a Terrain 
700 1 |a Zhang, Gong  |u School of Electronics and Information Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China 
700 1 |a Yang, Yan  |u AVIC Aviation Electronics Co., Ltd., Beijing 100081, China 
700 1 |a Yuan Peiyuan  |u AVIC Aviation Electronics Co., Ltd., Beijing 100081, China 
700 1 |a Lu Shuntong  |u AVIC Aviation Electronics Co., Ltd., Beijing 100081, China 
773 0 |t Drones  |g vol. 9, no. 8 (2025), p. 542-568 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3244009940/abstract/embedded/ZKJTFFSVAI7CB62C?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3244009940/fulltextwithgraphics/embedded/ZKJTFFSVAI7CB62C?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3244009940/fulltextPDF/embedded/ZKJTFFSVAI7CB62C?source=fedsrch