Enhancing Learning in Microelectronic Circuits: Integrating LTspice Simulations and Structured Reflections in a Design Project

Na minha lista:
Detalhes bibliográficos
Publicado no:Education Sciences vol. 15, no. 8 (2025), p. 1045-1064
Autor principal: Shekh-Abed Aziz
Publicado em:
MDPI AG
Assuntos:
Acesso em linha:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Tags: Adicionar Tag
Sem tags, seja o primeiro a adicionar uma tag!
Descrição
Resumo:This study investigates the integration of LTspice simulations and structured reflective practices within a project-based learning (PBL) framework in a Microelectronic Circuits course. The course was designed to improve students’ conceptual understanding, problem-solving abilities, and engagement by embedding simulation-based assignments and guided reflections within a final design project. A qualitative case study was conducted with 49 third-year undergraduate electrical engineering students. The data sources included structured reflection submissions, researcher observations, and evaluations of project presentations. Thematic analysis identified five recurring themes: linking theory to practice, iterative problem-solving strategies, metacognitive awareness, peer engagement, and reflections on integration challenges and benefits. The results indicate that the LTspice simulations enabled the students to visualize circuit behavior, experiment with design parameters, and observe the effects of design trade-offs. The integration of structured reflection prompted deeper learning by helping the students recognize misconceptions, articulate troubleshooting strategies, and build confidence in circuit analysis. Although some students initially struggled with the complexity of the simulation software, the iterative and collaborative nature of the PBL process increased their motivation and promoted meaningful engagement. This study contributes to the growing body of research on active learning in engineering education and offers practical recommendations for implementing simulation-based learning environments that promote critical thinking, metacognition, and technical competence.
ISSN:2227-7102
2076-3344
DOI:10.3390/educsci15081045
Fonte:Education Database