Accelerating Broadband DOA Estimation: A Real-Valued and Coherent Sparse Bayesian Approach for 5G Sensing
保存先:
| 出版年: | Electronics vol. 14, no. 16 (2025), p. 3174-3200 |
|---|---|
| 第一著者: | |
| その他の著者: | , , |
| 出版事項: |
MDPI AG
|
| 主題: | |
| オンライン・アクセス: | Citation/Abstract Full Text + Graphics Full Text - PDF |
| タグ: |
タグなし, このレコードへの初めてのタグを付けませんか!
|
| 抄録: | For applications like smart cities and autonomous driving, high-precision direction-of-arrival (DOA) estimation for 5G broadband signals is essential. A primary obstacle for existing methods is the spatial incoherence caused by multi-frequency propagation. We present a sparse Bayesian learning (SBL) algorithm specifically designed to resolve this issue while also minimizing computational load. The algorithm synergistically combines three key components: first, a multiple-signal classification (MUSIC)-like focusing technique ensures a coherent sparse model; second, a real-valued transformation significantly cuts down on computational complexity; and third, an optimized variational Bayesian inference accelerates convergence via root-finding. Validation against MUSIC and rootSBL confirms our method’s marked superiority in low-SNR, limited-snapshot, and multipath conditions delivering both higher accuracy and faster convergence. This work, thus, contributes an effective and practical solution for real-time 5G DOA sensing. |
|---|---|
| ISSN: | 2079-9292 |
| DOI: | 10.3390/electronics14163174 |
| ソース: | Advanced Technologies & Aerospace Database |