Machine Learning in Gel-Based Additive Manufacturing: From Material Design to Process Optimization

Sábháilte in:
Sonraí bibleagrafaíochta
Foilsithe in:Gels vol. 11, no. 8 (2025), p. 582-610
Príomhchruthaitheoir: Zhang Zhizhou
Rannpháirtithe: Wang, Yaxin, Wang, Weiguang
Foilsithe / Cruthaithe:
MDPI AG
Ábhair:
Rochtain ar líne:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Clibeanna: Cuir clib leis
Níl clibeanna ann, Bí ar an gcéad duine le clib a chur leis an taifead seo!

MARC

LEADER 00000nab a2200000uu 4500
001 3244038758
003 UK-CbPIL
022 |a 2310-2861 
024 7 |a 10.3390/gels11080582  |2 doi 
035 |a 3244038758 
045 2 |b d20250101  |b d20251231 
100 1 |a Zhang Zhizhou  |u Department of Mechanical and Aerospace Engineering, School of Engineering, The University of Manchester, Manchester M13 9PL, UK 
245 1 |a Machine Learning in Gel-Based Additive Manufacturing: From Material Design to Process Optimization 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Machine learning is reshaping gel-based additive manufacturing by enabling accelerated material design and predictive process optimization. This review provides a comprehensive overview of recent progress in applying machine learning across gel formulation development, printability prediction, and real-time process control. The integration of algorithms such as neural networks, random forests, and support vector machines allows accurate modeling of gel properties, including rheology, elasticity, swelling, and viscoelasticity, from compositional and processing data. Advances in data-driven formulation and closed-loop robotics are moving gel printing from trial and error toward autonomous and efficient material discovery. Despite these advances, challenges remain regarding data sparsity, model robustness, and integration with commercial printing systems. The review results highlight the value of open-source datasets, standardized protocols, and robust validation practices to ensure reproducibility and reliability in both research and clinical environments. Looking ahead, combining multimodal sensing, generative design, and automated experimentation will further accelerate discoveries and enable new possibilities in tissue engineering, biomedical devices, soft robotics, and sustainable materials manufacturing. 
653 |a Mechanical properties 
653 |a Behavior 
653 |a Data processing 
653 |a Optimization 
653 |a Closed loops 
653 |a Amino acids 
653 |a Viscoelasticity 
653 |a Manufacturing 
653 |a Machine learning 
653 |a Additive manufacturing 
653 |a Industrial robots 
653 |a Viscosity 
653 |a Neural networks 
653 |a Artificial intelligence 
653 |a Support vector machines 
653 |a Rheology 
653 |a Automation 
653 |a Soft robotics 
653 |a Lasers 
653 |a Rheological properties 
653 |a Biomedical engineering 
653 |a Yield stress 
653 |a Interfacial bonding 
653 |a Tissue engineering 
653 |a Real time 
653 |a Design optimization 
700 1 |a Wang, Yaxin  |u Centre for the Cellular Microenvironment (CeMi), University of Glasgow, Glasgow G12 8QQ, UK 
700 1 |a Wang, Weiguang  |u Department of Mechanical Engineering, School of Engineering, University of Southampton, Southampton SO17 1BJ, UK 
773 0 |t Gels  |g vol. 11, no. 8 (2025), p. 582-610 
786 0 |d ProQuest  |t Materials Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3244038758/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3244038758/fulltextwithgraphics/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3244038758/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch