Machine Learning in Gel-Based Additive Manufacturing: From Material Design to Process Optimization

محفوظ في:
التفاصيل البيبلوغرافية
الحاوية / القاعدة:Gels vol. 11, no. 8 (2025), p. 582-610
المؤلف الرئيسي: Zhang Zhizhou
مؤلفون آخرون: Wang, Yaxin, Wang, Weiguang
منشور في:
MDPI AG
الموضوعات:
الوصول للمادة أونلاين:Citation/Abstract
Full Text + Graphics
Full Text - PDF
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
الوصف
مستخلص:Machine learning is reshaping gel-based additive manufacturing by enabling accelerated material design and predictive process optimization. This review provides a comprehensive overview of recent progress in applying machine learning across gel formulation development, printability prediction, and real-time process control. The integration of algorithms such as neural networks, random forests, and support vector machines allows accurate modeling of gel properties, including rheology, elasticity, swelling, and viscoelasticity, from compositional and processing data. Advances in data-driven formulation and closed-loop robotics are moving gel printing from trial and error toward autonomous and efficient material discovery. Despite these advances, challenges remain regarding data sparsity, model robustness, and integration with commercial printing systems. The review results highlight the value of open-source datasets, standardized protocols, and robust validation practices to ensure reproducibility and reliability in both research and clinical environments. Looking ahead, combining multimodal sensing, generative design, and automated experimentation will further accelerate discoveries and enable new possibilities in tissue engineering, biomedical devices, soft robotics, and sustainable materials manufacturing.
تدمد:2310-2861
DOI:10.3390/gels11080582
المصدر:Materials Science Database