Numerical Method for Internal Structure and Surface Evaluation in Coatings

Shranjeno v:
Bibliografske podrobnosti
izdano v:Inventions vol. 10, no. 4 (2025), p. 71-107
Glavni avtor: Kačinskas Tomas
Drugi avtorji: Baskutis Saulius
Izdano:
MDPI AG
Teme:
Online dostop:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Oznake: Označite
Brez oznak, prvi označite!
Opis
Resumen:This study introduces a MATrix LABoratory (MATLAB, version R2024b, update 1 (24.2.0.2740171))-based automated system for the detection and measurement of indication areas in coated surfaces, enhancing the accuracy and efficiency of quality control processes in metal, polymeric and thermoplastic coatings. The developed code identifies various indication characteristics in the image and provides numerical results, assesses the size and quantity of indications and evaluates conformity to ISO standards. A comprehensive testing method, involving non-destructive penetrant testing (PT) and radiographic testing (RT), allowed for an in-depth analysis of surface and internal porosity across different coating methods, including aluminum-, copper-, polytetrafluoroethylene (PTFE)- and polyether ether ketone (PEEK)-based materials. Initial findings had a major impact on indicating a non-homogeneous surface of obtained coatings, manufactured using different technologies and materials. Whereas researchers using non-destructive testing (NDT) methods typically rely on visual inspection and manual counting, the system under study automates this process. Each sample image is loaded into MATLAB and analyzed using the Image Processing Tool, Computer Vision Toolbox, Statistics and Machine Learning Toolbox. The custom code performs essential tasks such as image conversion, filtering, boundary detection, layering operations and calculations. These processes are integral to rendering images with developed indications according to NDT method requirements, providing a detailed visual and numerical representation of the analysis. RT also validated the observations made through surface indication detection, revealing either the absence of hidden defects or, conversely, internal porosity correlating with surface conditions. Matrix and graphical representations were used to facilitate the comparison of test results, highlighting more advanced methods and materials as the superior choice for achieving optimal mechanical and structural integrity. This research contributes to addressing challenges in surface quality assurance, advancing digital transformation in inspection processes and exploring more advanced alternatives to traditional coating technologies and materials.
ISSN:2411-5134
DOI:10.3390/inventions10040071
Fuente:Advanced Technologies & Aerospace Database