Intelligent Route Planning for Transport Ship Formations: A Hierarchical Global–Local Optimization and Collaborative Control Framework

Spremljeno u:
Bibliografski detalji
Izdano u:Journal of Marine Science and Engineering vol. 13, no. 8 (2025), p. 1503-1529
Glavni autor: Guo Zilong
Daljnji autori: Hong, Mei, Li, Yunying, Qian Longxia, Zhang Yongchui, Hanlin, Li
Izdano:
MDPI AG
Teme:
Online pristup:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Oznake: Dodaj oznaku
Bez oznaka, Budi prvi tko označuje ovaj zapis!

MARC

LEADER 00000nab a2200000uu 4500
001 3244043903
003 UK-CbPIL
022 |a 2077-1312 
024 7 |a 10.3390/jmse13081503  |2 doi 
035 |a 3244043903 
045 2 |b d20250101  |b d20251231 
084 |a 231479  |2 nlm 
100 1 |a Guo Zilong  |u College of Meteorology and Oceanology, National University of Defense Technology, Changsha 410073, China; gzlong_@nudt.edu.cn (Z.G.); 
245 1 |a Intelligent Route Planning for Transport Ship Formations: A Hierarchical Global–Local Optimization and Collaborative Control Framework 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Multi-vessel formation shipping demonstrates significant potential for enhancing maritime transportation efficiency and economy. However, existing route planning systems inadequately address the unique challenges of formations, where traditional methods fail to integrate global optimality, local dynamic obstacle avoidance, and formation coordination into a cohesive system. Global planning often neglects multi-ship collaborative constraints, while local methods disregard vessel maneuvering characteristics and formation stability. This paper proposes GLFM, a three-layer hierarchical framework (global optimization–local adjustment-formation collaboration module) for intelligent route planning of transport ship formations. GLFM integrates an improved multi-objective A* algorithm for global path optimization under dynamic meteorological and oceanographic (METOC) conditions and International Maritime Organization (IMO) safety regulations, with an enhanced Artificial Potential Field (APF) method incorporating ship safety domains for dynamic local obstacle avoidance. Formation, structural stability, and coordination are achieved through an improved leader–follower approach. Simulation results demonstrate that GLFM-generated trajectories significantly outperform conventional routes, reducing average risk level by 38.46% and voyage duration by 12.15%, while maintaining zero speed and period violation rates. Effective obstacle avoidance is achieved, with the leader vessel navigating optimized global waypoints and followers maintaining formation structure. The GLFM framework successfully balances global optimality with local responsiveness, enhances formation transportation efficiency and safety, and provides a comprehensive solution for intelligent route optimization in multi-constrained marine convoy operations. 
651 4 |a Pacific Ocean 
653 |a Potential fields 
653 |a Safety regulations 
653 |a Sea vessels 
653 |a Collaboration 
653 |a Ship domains 
653 |a Shipping 
653 |a Optimization 
653 |a Winter 
653 |a Coordination 
653 |a Efficiency 
653 |a Risk levels 
653 |a Marine transportation 
653 |a Formations 
653 |a Wind 
653 |a Transportation safety 
653 |a Planning 
653 |a Global optimization 
653 |a Route planning 
653 |a Methods 
653 |a Local optimization 
653 |a Algorithms 
653 |a Obstacle avoidance 
653 |a Ship handling 
653 |a Structural stability 
653 |a Shipping industry 
653 |a Economic 
700 1 |a Hong, Mei  |u College of Meteorology and Oceanology, National University of Defense Technology, Changsha 410073, China; gzlong_@nudt.edu.cn (Z.G.); 
700 1 |a Li, Yunying  |u College of Meteorology and Oceanology, National University of Defense Technology, Changsha 410073, China; gzlong_@nudt.edu.cn (Z.G.); 
700 1 |a Qian Longxia  |u School of Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China 
700 1 |a Zhang Yongchui  |u College of Meteorology and Oceanology, National University of Defense Technology, Changsha 410073, China; gzlong_@nudt.edu.cn (Z.G.); 
700 1 |a Hanlin, Li  |u College of Meteorology and Oceanology, National University of Defense Technology, Changsha 410073, China; gzlong_@nudt.edu.cn (Z.G.); 
773 0 |t Journal of Marine Science and Engineering  |g vol. 13, no. 8 (2025), p. 1503-1529 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3244043903/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3244043903/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3244043903/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch