The Extremal Value Analysis of Sea Level in the Gulf of Cádiz and Alborán Sea: A New Methodology and the Resilience of Critical Infrastructures

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Marine Science and Engineering vol. 13, no. 8 (2025), p. 1567-1585
1. Verfasser: Alonso del Rosario José J.
Weitere Verfasser: Yin Danping, Vidal Pérez Juan M., Coronil Huertas Daniel J., Blázquez Gómez Elizabeth, Pavón Quintana Santiago, Muñoz Pérez Juan J., Torrecillas Cristina
Veröffentlicht:
MDPI AG
Schlagworte:
Online-Zugang:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Tags: Tag hinzufügen
Keine Tags, Fügen Sie das erste Tag hinzu!

MARC

LEADER 00000nab a2200000uu 4500
001 3244044305
003 UK-CbPIL
022 |a 2077-1312 
024 7 |a 10.3390/jmse13081567  |2 doi 
035 |a 3244044305 
045 2 |b d20250101  |b d20251231 
084 |a 231479  |2 nlm 
100 1 |a Alonso del Rosario José J.  |u Department of Applied Physics, CASEM, University of Cádiz, República Saharaui. Av. s/n, 11510 Puerto Real, Cádiz, Spain; juanjose.munoz@uca.es 
245 1 |a The Extremal Value Analysis of Sea Level in the Gulf of Cádiz and Alborán Sea: A New Methodology and the Resilience of Critical Infrastructures 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Rising sea levels and increasing storm wave heights are two clear indicators of climate change affecting coastal environments worldwide. Coastal cities and infrastructure are particularly vulnerable to these hazards, highlighting the need for accurate predictions and effective adaptation and resilience strategies to protect human lives and economic activities. This study focuses on the Andalusia coast of southern Spain, from Cádiz to Almería, analyzing twelve years of sea level and wave height records using an Extreme Value Analysis. A key challenge lies in selecting the most suitable statistical distribution for long-term predictions. To address this, we propose a modified application of the Cramér–Rao Lower Bound and compare it with the Akaike Information Criteria and the Bayesian Information Criteria. Our results indicate that sea level extremes generally follow a Gumbel distribution, while wave height extremes align more closely with the Fisher–Tippett I distribution. Additionally, a high-resolution digital elevation model of the Navantia Puerto Real shipyard, generated with LiDAR scanning, was used to identify flood-prone areas and assess potential operational impacts. This approach allows for the development of practical recommendations for enhancing infrastructure resilience. The main contribution of this work includes the estimation of extreme regimes for sea level and wave stations, a novel and more efficient application of the Cramér–Rao Lower Bound, a comparative analysis with Bayesian criteria, and providing recommendations to improve the resilience of shipyard operations. 
610 4 |a Navantia 
651 4 |a Spain 
653 |a Climate change 
653 |a Lower bounds 
653 |a Sea level 
653 |a Tidal waves 
653 |a Ports 
653 |a Comparative analysis 
653 |a Cramer-Rao bounds 
653 |a Economic activities 
653 |a Infrastructure 
653 |a Shipyards 
653 |a Coastal zones 
653 |a Lidar 
653 |a Wave height 
653 |a Sea level rise 
653 |a Coastal environments 
653 |a Sea level changes 
653 |a Time series 
653 |a Shipbuilding 
653 |a Extreme values 
653 |a Storms 
653 |a Bayesian analysis 
653 |a Digital Elevation Models 
653 |a Wind 
653 |a Resilience 
653 |a Maritime industry 
653 |a Value analysis 
653 |a Criteria 
653 |a Probability theory 
653 |a Bayesian theory 
653 |a Critical infrastructure 
653 |a Environmental 
700 1 |a Yin Danping  |u Department of Ship Building, School of Naval and Ocean Engineering, CASEM, University of Cádiz, República Saharaui Av. s/n, 11510 Puerto Real, Cádiz, Spain; danping.yin@alum.uca.es (D.Y.); juan.vidal@uca.es (J.M.V.P.); daniel.coronil@uca.es (D.J.C.H.); santiago.pavon@uca.es (S.P.Q.) 
700 1 |a Vidal Pérez Juan M.  |u Department of Ship Building, School of Naval and Ocean Engineering, CASEM, University of Cádiz, República Saharaui Av. s/n, 11510 Puerto Real, Cádiz, Spain; danping.yin@alum.uca.es (D.Y.); juan.vidal@uca.es (J.M.V.P.); daniel.coronil@uca.es (D.J.C.H.); santiago.pavon@uca.es (S.P.Q.) 
700 1 |a Coronil Huertas Daniel J.  |u Department of Ship Building, School of Naval and Ocean Engineering, CASEM, University of Cádiz, República Saharaui Av. s/n, 11510 Puerto Real, Cádiz, Spain; danping.yin@alum.uca.es (D.Y.); juan.vidal@uca.es (J.M.V.P.); daniel.coronil@uca.es (D.J.C.H.); santiago.pavon@uca.es (S.P.Q.) 
700 1 |a Blázquez Gómez Elizabeth  |u Department Earth Sciences, Faculty of Marine and Environmental Sciences, CASEM, University of Cádiz, República Saharaui Av., 11510 Puerto Real, Cádiz, Spain; elizabeth.blazquez@uca.es 
700 1 |a Pavón Quintana Santiago  |u Department of Ship Building, School of Naval and Ocean Engineering, CASEM, University of Cádiz, República Saharaui Av. s/n, 11510 Puerto Real, Cádiz, Spain; danping.yin@alum.uca.es (D.Y.); juan.vidal@uca.es (J.M.V.P.); daniel.coronil@uca.es (D.J.C.H.); santiago.pavon@uca.es (S.P.Q.) 
700 1 |a Muñoz Pérez Juan J.  |u Department of Applied Physics, CASEM, University of Cádiz, República Saharaui. Av. s/n, 11510 Puerto Real, Cádiz, Spain; juanjose.munoz@uca.es 
700 1 |a Torrecillas Cristina  |u Departmento de Ingeniería Gráfica, Escuela Técnica Superior de Ingeniería, Universidad de Sevilla, Camino de los Descubrimientos s/n, Isla de la Cartuja, 41092 Sevilla, Sevilla, Spain; torrecillas@us.es 
773 0 |t Journal of Marine Science and Engineering  |g vol. 13, no. 8 (2025), p. 1567-1585 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3244044305/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3244044305/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3244044305/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch