A Synchronized Optimization Method of Frequency Setting, Timetabling, and Train Circulation Planning for URT Networks with Overlapping Lines: A Case Study of the Addis Ababa Light Rail Transit Service

Guardado en:
Detalles Bibliográficos
Publicado en:Mathematics vol. 13, no. 16 (2025), p. 2654-2682
Autor principal: Zhou Wenliang
Otros Autores: Alemu Addishiwot, Oldache Mehdi
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3244044828
003 UK-CbPIL
022 |a 2227-7390 
024 7 |a 10.3390/math13162654  |2 doi 
035 |a 3244044828 
045 2 |b d20250101  |b d20251231 
084 |a 231533  |2 nlm 
100 1 |a Zhou Wenliang 
245 1 |a A Synchronized Optimization Method of Frequency Setting, Timetabling, and Train Circulation Planning for URT Networks with Overlapping Lines: A Case Study of the Addis Ababa Light Rail Transit Service 
260 |b MDPI AG  |c 2025 
513 |a Case Study Journal Article 
520 3 |a Urban rail transit (URT) systems are essential to ensuring efficient and sustainable urban mobility. However, the core components of operational planning, service frequency setting, train timetabling, and train allocation are often optimized separately, leading to fragmented decision-making and suboptimal system performance. This study addresses that gap by proposing an integrated optimization framework that simultaneously considers all three planning layers under time-dependent passenger demand conditions. The problem is formulated as a bi-objective Integer Nonlinear Programming (INLP) model, aiming to jointly minimize passenger waiting time and total operational cost. To solve this large-scale, combinatorial problem, a tailored Multi-Objective Particle Swarm Optimization (MOPSO) algorithm is developed. The algorithm incorporates discrete variable handling, constraint-preserving mechanisms, and a customized encoding scheme that aligns with the structural characteristics of URT operations. The proposed framework is applied to real-world data from the Addis Ababa Light Rail Transit (AALRT) system. The results demonstrate that the MOPSO-based approach offers a more diverse and operationally feasible set of trade-off solutions compared to a widely used benchmark algorithm, NSGA-II. Specifically, it provides transit planners with a flexible decision-support tool capable of identifying schedules that balance service quality and cost, based on varying strategic or budgetary priorities. By integrating interdependent planning decisions into a unified model and leveraging the strengths of a customized metaheuristic algorithm, this study contributes a scalable, adaptable, and practically relevant methodology for improving the performance of urban rail systems. 
651 4 |a Addis Ababa Ethiopia 
651 4 |a Ethiopia 
653 |a Time dependence 
653 |a Particle swarm optimization 
653 |a Integer programming 
653 |a Collaboration 
653 |a Combinatorial analysis 
653 |a Light rail transportation 
653 |a Optimization 
653 |a Passengers 
653 |a Transportation planning 
653 |a Multiple objective analysis 
653 |a Operating costs 
653 |a Energy consumption 
653 |a Customization 
653 |a Nonlinear programming 
653 |a Heuristic methods 
653 |a Efficiency 
653 |a Case studies 
653 |a Schedules 
653 |a Scheduling 
653 |a Decision support systems 
653 |a Frequency setting 
653 |a Travel demand 
653 |a Algorithms 
653 |a Travel 
653 |a Quality of service 
653 |a Linear programming 
653 |a Literature reviews 
653 |a Cost control 
653 |a Urban rail 
700 1 |a Alemu Addishiwot 
700 1 |a Oldache Mehdi 
773 0 |t Mathematics  |g vol. 13, no. 16 (2025), p. 2654-2682 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3244044828/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3244044828/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3244044828/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch