Automated and Optimized Scheduling for CNC Machines

Guardado en:
Detalles Bibliográficos
Publicado en:Mathematics vol. 13, no. 16 (2025), p. 2621-2641
Autor principal: Martins Guilherme Sousa Silva
Otros Autores: Costa M. Fernanda P., Alves Filipe
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Resumen:This work presents the design and implementation of an automated, digital, and modular system to address a real-world industrial challenge: the automation and optimization of production schedules for Computer Numerical Control (CNC) machines in a factory in Portugal. The goal is to replicate and enhance the existing manual scheduling process by integrating multiple data sources and formulating a general Mixed-Integer Linear Programming (MILP) model with constraints. This model can be solved using MILP optimization methods to produce efficient scheduling solutions that minimize machine downtime, reduce tool change frequency, and lower operator workload. The proposed system is implemented using open-source Python abstraction interfaces (Python-MIP), employing state-of-the-art of MILP optimization solvers such as CBC and HiGHS for solution validation. The system is designed to accommodate a wide range of constraints and operational factors, which can be switched on or off as needed, thereby enhancing its flexibility and decision-support capabilities. Additionally, a user-friendly graphical application is developed to facilitate the input of specific scheduling data and constraints, enabling flexible and efficient formulation of diverse scheduling scenarios. The proposed system is validated through multiple case studies, demonstrating its effectiveness in optimizing industrial CNC scheduling tasks and providing a scalable, practical tool for real-world factory operations.
ISSN:2227-7390
DOI:10.3390/math13162621
Fuente:Engineering Database