Automated and Optimized Scheduling for CNC Machines

Guardat en:
Dades bibliogràfiques
Publicat a:Mathematics vol. 13, no. 16 (2025), p. 2621-2641
Autor principal: Martins Guilherme Sousa Silva
Altres autors: Costa M. Fernanda P., Alves Filipe
Publicat:
MDPI AG
Matèries:
Accés en línia:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 3244045026
003 UK-CbPIL
022 |a 2227-7390 
024 7 |a 10.3390/math13162621  |2 doi 
035 |a 3244045026 
045 2 |b d20250101  |b d20251231 
084 |a 231533  |2 nlm 
100 1 |a Martins Guilherme Sousa Silva  |u Centre of Mathematics, University of Minho, 4710-057 Braga, Portugal; pg52214@alunos.uminho.pt (G.S.S.M.); mfc@math.uminho.pt (M.F.P.C.) 
245 1 |a Automated and Optimized Scheduling for CNC Machines 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a This work presents the design and implementation of an automated, digital, and modular system to address a real-world industrial challenge: the automation and optimization of production schedules for Computer Numerical Control (CNC) machines in a factory in Portugal. The goal is to replicate and enhance the existing manual scheduling process by integrating multiple data sources and formulating a general Mixed-Integer Linear Programming (MILP) model with constraints. This model can be solved using MILP optimization methods to produce efficient scheduling solutions that minimize machine downtime, reduce tool change frequency, and lower operator workload. The proposed system is implemented using open-source Python abstraction interfaces (Python-MIP), employing state-of-the-art of MILP optimization solvers such as CBC and HiGHS for solution validation. The system is designed to accommodate a wide range of constraints and operational factors, which can be switched on or off as needed, thereby enhancing its flexibility and decision-support capabilities. Additionally, a user-friendly graphical application is developed to facilitate the input of specific scheduling data and constraints, enabling flexible and efficient formulation of diverse scheduling scenarios. The proposed system is validated through multiple case studies, demonstrating its effectiveness in optimizing industrial CNC scheduling tasks and providing a scalable, practical tool for real-world factory operations. 
653 |a Mathematical programming 
653 |a Scheduling 
653 |a Software 
653 |a Linear programming 
653 |a Workers 
653 |a Software development 
653 |a Integer programming 
653 |a Mathematical models 
653 |a Modular systems 
653 |a Numerical controls 
653 |a Automation 
653 |a Production scheduling 
653 |a Optimization 
653 |a Job shops 
653 |a Mixed integer 
653 |a Constraints 
653 |a Optimization algorithms 
653 |a Downtime 
653 |a Factories 
700 1 |a Costa M. Fernanda P.  |u Centre of Mathematics, University of Minho, 4710-057 Braga, Portugal; pg52214@alunos.uminho.pt (G.S.S.M.); mfc@math.uminho.pt (M.F.P.C.) 
700 1 |a Alves Filipe  |u DTx—Digital Transformation CoLAB, University of Minho, 4800-058 Guimarães, Portugal 
773 0 |t Mathematics  |g vol. 13, no. 16 (2025), p. 2621-2641 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3244045026/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3244045026/fulltextwithgraphics/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3244045026/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch